Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Viruses ; 15(12)2023 12 17.
Article in English | MEDLINE | ID: mdl-38140691

ABSTRACT

Salmonid alphavirus strain 3 is responsible for outbreaks of pancreas disease in salmon and rainbow trout in Norway. Although the extensive amount of research on SAV3 focused mainly on the heart and pancreas (of clinical importance), tropism and pathogenesis studies of the virus in other salmon tissues are limited. Here, we used a combination of RT-qPCR (Q_nsp1 gene) and in situ hybridization (RNAscope®) to demonstrate the tropism of SAV3 in situ in tissues of Atlantic salmon, employing a challenge model (by cohabitation). In addition, as previous results suggested that the pseudobranch may harbor the virus, the change in the expression of different immune genes upon SAV3 infection (RT-qPCR) was focused on the pseudobranch in this study. In situ hybridization detected SAV3 in different tissues of Atlantic salmon during the acute phase of the infection, with the heart ventricle showing the most extensive infection. Furthermore, the detection of the virus in different adipose tissues associated with the internal organs of the salmon suggests a specific affinity of SAV3 to adipocyte components. The inconsistent immune response to SAV3 in the pseudobranch after infection did not mitigate the infection in that tissue and is probably responsible for the persistent low infection at 4 weeks post-challenge. The early detection of SAV3 in the pseudobranch after infection, along with the persistent low infection over the experimental infection course, suggests a pivotal role of the pseudobranch in SAV3 pathogenesis in Atlantic salmon.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Salmo salar , Animals , Alphavirus/genetics , Heart
2.
Front Immunol ; 14: 1158077, 2023.
Article in English | MEDLINE | ID: mdl-37180109

ABSTRACT

Many sialic acid-binding viruses express a receptor-destroying enzyme (RDE) that removes the virus-targeted receptor and limits viral interactions with the host cell surface. Despite a growing appreciation of how the viral RDE promotes viral fitness, little is known about its direct effects on the host. Infectious salmon anemia virus (ISAV) attaches to 4-O-acetylated sialic acids on Atlantic salmon epithelial, endothelial, and red blood cell surfaces. ISAV receptor binding and destruction are effectuated by the same molecule, the haemagglutinin esterase (HE). We recently discovered a global loss of vascular 4-O-acetylated sialic acids in ISAV-infected fish. The loss correlated with the expression of viral proteins, giving rise to the hypothesis that it was mediated by the HE. Here, we report that the ISAV receptor is also progressively lost from circulating erythrocytes in infected fish. Furthermore, salmon erythrocytes exposed to ISAV ex vivo lost their capacity to bind new ISAV particles. The loss of ISAV binding was not associated with receptor saturation. Moreover, upon loss of the ISAV receptor, erythrocyte surfaces became more available to the lectin wheat germ agglutinin, suggesting a potential to alter interactions with endogenous lectins of similar specificity. The pruning of erythrocyte surfaces was inhibited by an antibody that prevented ISAV attachment. Furthermore, recombinant HE, but not an esterase-silenced mutant, was sufficient to induce the observed surface modulation. This links the ISAV-induced erythrocyte modulation to the hydrolytic activity of the HE and shows that the observed effects are not mediated by endogenous esterases. Our findings are the first to directly link a viral RDE to extensive cell surface modulation in infected individuals. This raises the questions of whether other sialic acid-binding viruses that express RDEs affect host cells to a similar extent, and if such RDE-mediated cell surface modulation influences host biological functions with relevance to viral disease.


Subject(s)
Isavirus , Salmo salar , Animals , Isavirus/physiology , Sialic Acids , N-Acetylneuraminic Acid , Esterases , Erythrocytes
3.
Viruses ; 14(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36560705

ABSTRACT

The Salmon gill poxvirus (SGPV) has emerged in recent years as the cause of an acute respiratory disease that can lead to high mortality in farmed Atlantic salmon presmolts, known as Salmon gill poxvirus disease. SGPV was first identified in Norway in the 1990s, and its large DNA genome, consisting of over 206 predicted protein-coding genes, was characterized in 2015. This review summarizes current knowledge relating to disease manifestation and its effects on the host immune system and describes dissemination of the virus. It also demonstrates how newly established molecular tools can help us to understand SGPV and its pathogenesis. Finally, we conclude and ask some burning questions that should be addressed in future research.


Subject(s)
Chordopoxvirinae , Fish Diseases , Poxviridae , Salmo salar , Animals , Gills , Poxviridae/genetics
4.
Viruses ; 14(2)2022 02 02.
Article in English | MEDLINE | ID: mdl-35215905

ABSTRACT

Infectious salmon anaemia virus (ISAV) binds circulating Atlantic salmon erythrocytes, but the relevance of this interaction for the course of infection and development of disease remains unclear. We here characterise ISAV-erythrocyte interactions in experimentally infected Atlantic salmon and show that ISAV-binding to erythrocytes is common and precedes the development of disease. Viral RNA and infective particles were enriched in the cellular fraction of blood. While erythrocyte-associated ISAV remained infectious, erythrocytes dose-dependently limited the infection of cultured cells. Surprisingly, immunostaining of blood smears revealed expression of ISAV proteins in a small fraction of erythrocytes in one of the examined trials, confirming that ISAV can be internalised in this cell type and engage the cellular machinery in transcription and translation. However, viral protein expression in erythrocytes was rare and not required for development of disease and mortality. Furthermore, active transcription of ISAV mRNA was higher in tissues than in blood, supporting the assumption that ISAV replication predominantly takes place in endothelial cells. In conclusion, Atlantic salmon erythrocytes bind ISAV and sequester infective virus particles during infection, but do not appear to significantly contribute to ISAV replication. We discuss the implications of our findings for infection dynamics and pathogenesis of infectious salmon anaemia.


Subject(s)
Erythrocytes/virology , Fish Diseases/virology , Isavirus/physiology , Orthomyxoviridae Infections/veterinary , Salmo salar/virology , Animals , Endothelial Cells/virology , Fish Diseases/blood , Isavirus/genetics , Isavirus/isolation & purification , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/virology , Salmo salar/blood , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics , Virion/isolation & purification , Virion/physiology , Virus Replication
5.
Viruses ; 13(9)2021 09 04.
Article in English | MEDLINE | ID: mdl-34578351

ABSTRACT

Infectious salmon anemia virus (ISAV) infection is currently detected by fish sampling for PCR and immunohistochemistry analysis. As an alternative to sampling fish, we evaluated two different membrane filters in combination with four buffers for elution, concentration, and detection of ISAV in seawater, during a bath challenge of Atlantic salmon (Salmo salar L.) post-smolts with high and low concentrations of ISAV. Transmission of ISAV in the bath challenge was confirmed by a high mortality, clinical signs associated with ISA disease, and detection of ISAV RNA in organ tissues and seawater samples. The electronegatively charged filter, combined with lysis buffer, gave significantly higher ISAV RNA detection by droplet digital PCR from seawater (5.6 × 104 ISAV RNA copies/L; p < 0.001). Viral shedding in seawater was first detected at two days post-challenge and peaked on day 11 post-challenge, one day before mortalities started in fish challenged with high dose ISAV, demonstrating that a large viral shedding event occurs before death. These data provide important information for ISAV shedding that is relevant for the development of improved surveillance tools based on water samples, transmission models, and management of ISA.


Subject(s)
Fish Diseases/virology , Isavirus/genetics , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Salmo salar/virology , Virus Shedding , Anemia , Animals , Aquaculture , Fish Diseases/pathology , Fish Diseases/transmission , Isavirus/isolation & purification , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/transmission , Polymerase Chain Reaction , Seawater/virology
6.
Dis Aquat Organ ; 146: 41-52, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34498609

ABSTRACT

The traditional strategy for national surveillance of salmonid alphavirus (SAV) infection in Norwegian fish farms relies on a costly, time-consuming, and resource-demanding approach based on the monthly sampling of fish from all marine farms with salmonids. In order to develop an alternative surveillance method, a water filtration method was tested in parallel with the ongoing surveillance program at 7 Norwegian marine farm sites of Atlantic salmon Salmo salar L. with no current suspicion of SAV infection. During the period from May 2019 to January 2020, seawater samples were collected from the top layer water inside all net-pens at these 7 sites. The samples were concentrated for SAV by filtration through an MF-Millipore™ electronegative membrane filter, followed by rinsing with NucliSENS® Lysis Buffer, before RNA extraction and analysis by RT-qPCR. SAV was detected from seawater at an earlier stage compared to traditional sampling methods, at all sites where the fish tested positive for SAV. A significant negative relationship was observed at all sites between the SAV concentration found in seawater samples and the number of days until SAV was detected in the fish. This means that the fewer the SAV particles in the seawater, the more days it took until SAV was detected in the fish samples. Based on this, sampling of seawater every month for the surveillance of SAV has a great potential as an alternative method for early detection of SAV in Atlantic salmon farms.


Subject(s)
Alphavirus , Fish Diseases , Salmo salar , Animals , Fish Diseases/diagnosis , Fisheries , Seawater
7.
PLoS One ; 16(6): e0253297, 2021.
Article in English | MEDLINE | ID: mdl-34133472

ABSTRACT

Infectious salmon anaemia virus (ISAV) is the cause of an important waterborne disease of farmed Atlantic salmon. Detection of virus in water samples may constitute an alternative method to sacrificing fish for surveillance of fish populations for the presence of ISA-virus. We aimed to evaluate different membrane filters and buffers for concentration and recovery of ISAV in seawater, prior to molecular detection. One litre each of artificial and natural seawater was spiked with ISAV, followed by concentration with different filters and subsequent elution with different buffers. The negatively charged MF hydrophilic membrane filter, combined with NucliSENS® lysis buffer, presented the highest ISAV recovery percentages with 12.5 ± 1.3% by RT-qPCR and 31.7 ± 10.7% by RT-ddPCR. For the positively charged 1 MDS Zeta Plus® Virosorb® membrane filter, combined with NucliSENS® lysis buffer, the ISAV recovery percentages were 3.4 ± 0.1% by RT-qPCR and 10.8 ± 14.2% by RT-ddPCR. The limits of quantification (LOQ) were estimated to be 2.2 x 103 ISAV copies/L of natural seawater for both RT-qPCR and RT-ddPCR. The ISAV concentration method was more efficient in natural seawater.


Subject(s)
Filtration/methods , Fish Diseases/virology , Isavirus , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Seawater/virology , Animals , Buffers , Filtration/instrumentation , Fish Diseases/prevention & control , Membranes, Artificial , Orthomyxoviridae Infections/prevention & control , Reverse Transcriptase Polymerase Chain Reaction , Salmo salar/virology
8.
Dis Aquat Organ ; 144: 61-73, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33764314

ABSTRACT

Currently, the prevalence of salmonid alphavirus (SAV) in Norwegian Atlantic salmon farms is largely surveyed via sacrificing fish and sampling of organ tissue on a monthly basis. However, a more cost-efficient, straightforward, rapid, reliable, reproducible and animal welfare friendly method based on the detection of SAV in water could be considered as an alternative method. In the present study, such a method was developed and optimized through a 6 wk cohabitant challenge trial, using post-smolt Atlantic salmon Salmo salar L challenged with high or low doses of SAV subtype 3 (SAV3). Tank water and tissue samples from cohabitant fish were collected at 16 time points. SAV3 was concentrated from the water by filtration, using either electronegative or electropositive membrane filters, which were subsequently rinsed with one of 4 different buffer solutions. SAV3 was detected first in tank water (7 d post-challenge, DPC), and later in cohabitant fish organ tissue samples (12 DPC). The electronegative filter (MF-Millipore™) and rinsing with NucliSENS® easyMAG® Lysis Buffer presented the best SAV3 recovery. A significant positive correlation was found between SAV3 in the tank water concentrates and the mid-kidney samples. Based on these results, detection of SAV3 in filtrated seawater is believed to have the potential to serve as an alternative method for surveillance of SAV in Atlantic salmon farms.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Salmo salar , Alphavirus Infections/veterinary , Animals , Norway , Seawater
9.
J Virol Methods ; 287: 113990, 2021 01.
Article in English | MEDLINE | ID: mdl-33035567

ABSTRACT

Waterborne viral infections represent a major threat to fish health. For many viruses, understanding the interplay between pathogens, host and environment presents a major hurdle for transmission. Salmonid alphavirus (SAV) can infect and cause pancreas disease (PD) in farmed salmonids in seawater. During infection, SAV is excreted from infected fish to the seawater. We evaluated two types of filters and four different eluents, for concentration of SAV3. One L of seawater was spiked with SAV3, followed by filtration and virus elution from membrane filters. For the negatively charged MF hydrophilic membrane filter (MF-) combined with NucliSENS® lysis buffer the SAV3 recovery was 39.5 ±â€¯1.8 % by RT-ddPCR and 25.9 ±â€¯5.7 % by RT-qPCR. The recovery using the positively charged 1 MDS Zeta Plus® Virosorb® membrane filter (MD+), combined with NucliSENS® lysis buffer was 19.0 ±â€¯0.1 % by RT-ddPCR and 13.3 ±â€¯3.8 % by RT-qPCR. The limits of quantification (LOQ) and detection (LOD) were estimated to be 5.18 × 103 and 2.0 × 102 SAV3 copies/L of natural seawater, by RT-ddPCR. SAV3 recovery from small volumes of seawater, and the requirement for standard laboratory equipment, suggest the MF-filter combined with NucliSENS® lysis buffer would be a candidate for further validation in experimental trials.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Salmo salar , Salmonidae , Alphavirus/genetics , Animals , Fish Diseases/diagnosis , Real-Time Polymerase Chain Reaction , Seawater
10.
PLoS One ; 13(2): e0191792, 2018.
Article in English | MEDLINE | ID: mdl-29444101

ABSTRACT

Gill disease in Atlantic salmon, Salmo salar L., causes big losses in the salmon farming industry. Until now, tools to cultivate microorganisms causing gill disease and models to study the gill responses have been lacking. Here we describe the establishment and characterization of two cell lines from the gills of Atlantic salmon. Atlantic salmon gill cell ASG-10 consisted of cells staining for cytokeratin and e-cadherin and with desmosomes as seen by transmission electron microscopy suggesting the cells to be of epithelial origin. These structures were not seen in ASG-13. The cell lines have been maintained for almost 30 passages and both cell lines are fully susceptible to infection by infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), infectious pancreatic necrosis virus (IPNV), Atlantic salmon reovirus TS (TSRV) and Pacific salmon paramyxovirus (PSPV). While infectious salmon anemia virus (ISAV) did not cause visible CPE, immunofluorescent staining revealed a sub-fraction of cells in both the ASG-10 and ASG-13 lines may be permissive to infection. ASG-10 is able to proliferate and migrate to close scratches in the monolayer within seven days in vitro contrary to ASG-13, which does not appear to do have the same proliferative and migratory ability. These cell lines will be useful in studies of gill diseases in Atlantic salmon and may represent an important contribution for alternatives to experimental animals and studies of epithelial-mesenchymal cell biology.


Subject(s)
Gills/cytology , Salmo salar , Animals , Cell Line , Cell Proliferation , Polymerase Chain Reaction
11.
Parasit Vectors ; 10(1): 370, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28764744

ABSTRACT

BACKGROUND: In September 2008, a disease outbreak characterized by acute, severe gill pathology and peritonitis, involving the gastrointestinal tract, was observed in an Atlantic salmon (Salmo salar L.) farm in north-western Norway. During subsequent sampling in November 2008 and January 2009, chronic proliferative gill inflammation and peritonitis was observed. Cumulative mortalities of 5.6-12.8% and severe growth retardation were observed. Routine diagnostic analysis revealed no diseases known to salmon at the time, but microsporidian infection of tissues was observed. METHODS: To characterize the disease outbreak, a combination of histopathology, in situ hybridization (ISH), chitin, calcofluor-white (CFW) staining, and real-time PCR were used to describe the disease progression with visualization of the D. lepeophtherii stages in situ. RESULTS: The presence of the microsporidian Desmozoon lepeophtherii was confirmed with real-time PCR, DNA sequencing and ISH, and the parasite was detected in association with acute lesions in the gills and peritoneum. ISH using a probe specific to small subunit 16S rRNA gene provided an effective tool for demonstrating the distribution of D. lepeophtherii in the tissue. Infection in the peritoneum seemed localized in and around pre-existing vaccine granulomas, and in the gastrointestinal walls. In the heart, kidney and spleen, the infection was most often associated with mononuclear leucocytes and macrophages, including melanomacrophages. Desmozoon lepeophtherii exospores were found in the nuclei of the gastrointestinal epithelium for the first time, suggesting a role of the gastrointestinal tract in the spread of spores to the environment. CONCLUSIONS: This study describes the progression of D. lepeophtherii disease outbreak in an Atlantic salmon farm without any other known diseases present. Using different methods to examine the disease outbreak, new insight into the pathology of D. lepeophtherii was obtained. The parasite was localized in situ in association with severe tissue damage and inflammation in the gills, peritoneal cavity and in the gastrointestinal (GI) tract that links the parasite directly to the observed pathology.


Subject(s)
Apansporoblastina/isolation & purification , Fish Diseases/microbiology , Gills/microbiology , Microsporidiosis/veterinary , Salmo salar/parasitology , Animals , Apansporoblastina/genetics , Aquaculture , Disease Outbreaks , Disease Progression , Fish Diseases/epidemiology , Fish Diseases/mortality , Fish Diseases/physiopathology , Gills/pathology , Intestines/microbiology , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Norway/epidemiology , Peritonitis/microbiology , Peritonitis/veterinary , Salmo salar/growth & development
12.
Vet Res ; 47(1): 57, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27216404

ABSTRACT

Piscine orthoreovirus (PRV) is a ubiquitous virus in Norwegian salmon farms associated with the disease heart and skeletal muscle inflammation (HSMI). Experimental challenge has shown that the virus replicates in circulating red blood cells of Atlantic salmon prior to infecting heart myocytes. The infection route from water to blood is however still unknown. The related mammalian orthoreovirus primarily infects the lungs and gastrointestinal (GI) tract and is proposed to spread mainly through the faecal-oral route. To investigate the role of the salmonid GI tract in PRV-infection, oral and anal administration of virus was compared to intraperitoneal (i.p.) injection. When administered anally, PRV was transferred to blood 4 days post challenge (dpc) and levels peaked at 42 dpc, similar to i.p. injected fish. PRV was detected in heart and faeces with corresponding kinetics, and inflammatory heart lesions consistent with HSMI were observed from 49 dpc. The orally intubated group showed slower virus kinetics in both blood and heart, and no signs of HSMI. Compared to the oral and i.p. administration routes, leakage of virus inoculate by anal intubation was minor and challenge was restricted to the mid- and distal intestine. These findings show that anal intubation is an efficacious method for PRV delivery to the GI tract and demonstrates that PRV can establish infection through the intestine with the potential for transmission via faeces.


Subject(s)
Fish Diseases/virology , Intestines/virology , Orthoreovirus/pathogenicity , Salmo salar/virology , Animals , Feces/virology , Fish Diseases/transmission , Virus Shedding
13.
Glycoconj J ; 31(4): 327-35, 2014 May.
Article in English | MEDLINE | ID: mdl-24833039

ABSTRACT

Sialic acids are located at the terminal branches of the cell glycocalyx and secreted glycan molecules. O-Acetylation is an important modification of the sialic acids, however very few studies have demonstrated the in situ distribution of the O-Acetylated sialic acids. Here the distribution of glycoprotein bound 4-O-Acetylated sialic acids (4-O-Ac sias) in vertebrates was determined using a novel virus histochemistry assay. The 4-O-Ac sias were found in the circulatory system, i.e. on the surface of endothelial cells and RBCs, of several vertebrate species, though most frequently in the cartilaginous fish (class Chondrichthyes) and the bony fish (class Osteichthyes). The O-Acetylated sialic acid was detected in 64 % of the examined fish species. Even though the sialic acid was found less commonly in higher vertebrates, it was found at the same location in the positive species. The general significance of this endothelial labelling pattern distribution is discussed. The seemingly conserved local position through the evolution of the vertebrates, suggests an evolutionary advantage of this sialic acid modification.


Subject(s)
Glycoproteins/metabolism , N-Acetylneuraminic Acid/metabolism , Acetylation , Animals , Endothelial Cells/metabolism , Erythrocytes/metabolism , Glycoproteins/genetics , Species Specificity , Vertebrates
14.
Dev Comp Immunol ; 45(1): 107-14, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24561102

ABSTRACT

Previously, it has been assumed that fish lack organized mucosa-associated lymphoid structures. Recently, an interbranchial lymphoid tissue (ILT) was described in salmonid gills at a site with substantial exposure to antigen. In this study, immune responses were examined in gills, mid-kidney and the laser-dissected ILT of Atlantic salmon (Salmo salar L.) infected with infectious salmon anaemia virus (ISAV). A strong innate response was observed in gills and mid-kidney and even in the laser-dissected ILT, despite the fact that no virus could be traced in this tissue. A small delayed increase in IgT transcripts, exclusively in the ILT, could indicate that this tissue has a role as a secondary lymphoid organ with clonal expansion of IgT expressing B-cells. Compared to the other examined tissues, gills displayed the earliest replication of the virus, further supporting this tissue as the main entry route for infection with ISAV.


Subject(s)
Fish Diseases/immunology , Genes, MHC Class II , Gills/immunology , Isavirus/immunology , Orthomyxoviridae Infections/veterinary , Salmo salar/genetics , Animals , Fish Diseases/genetics , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/metabolism , Gills/virology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Salmo salar/immunology , Salmo salar/virology , Transcriptome
15.
J Anat ; 222(5): 547-57, 2013 May.
Article in English | MEDLINE | ID: mdl-23439106

ABSTRACT

Endothelial cells (ECs) line the luminal surfaces of the cardiovascular system and play an important role in cardiovascular functions such as regulation of haemostasis and vasomotor tone. A number of fish and mammalian viruses target these cells in the course of their infection. Infectious salmon anaemia virus (ISAV) attacks ECs and red blood cells (RBCs) of farmed Atlantic salmon (Salmo salar L.), producing the severe disease of infectious salmon anaemia (ISA). The investigation of ISA has up to now been hampered by the lack of a functional marker for ECs in Atlantic salmon in situ. In this study, we report the characterisation and use of a novel monoclonal antibody (MAb) detecting Atlantic salmon ECs (e.g. vessel endothelium, endocardial cells and scavenger ECs) and RBCs. The antibody can be used with immunohistochemistry, IFAT and on Western blots. It appears that the epitope recognised by the antibody is associated with the ISAV cellular receptor. Besides being a tool to identify ECs in situ, it could be useful in further studies of the pathogenicity of ISA. Finally, the detection of an epitope shared by ECs and RBCs agrees with recent findings that these cells share a common origin, thus the MAb can potentially be used to study the ontogeny of these cells in Atlantic salmon.


Subject(s)
Antibodies, Monoclonal , Endothelial Cells/immunology , Erythrocytes/immunology , Fish Diseases/immunology , Isavirus/immunology , Receptors, Virus/immunology , Salmo salar/virology , Animals , Endothelial Cells/cytology , Erythrocytes/cytology , Fish Diseases/virology , Immunohistochemistry
16.
Virol J ; 10: 5, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23282149

ABSTRACT

Infectious salmon anaemia virus (ISAV), a member of the Orthomyxoviridae family, infects and causes disease in farmed Atlantic salmon (Salmo salar L.). Previous studies have shown Atlantic salmon endothelial cells to be the primary targets of ISAV infection. However, it is not known if cells other than endothelial cells play a role in ISAV tropism. To further assess cell tropism, we examined ISAV infection of Atlantic salmon gill epithelial cells in vivo and in vitro. We demonstrated the susceptibility of epithelial cells to ISAV infection. On comparison of primary gill epithelial cell cultures with ISAV permissive fish cell cultures, we found the virus yield in primary gill epithelial cells to be comparable with that of salmon head kidney (SHK)-1 cells, but lower than TO or Atlantic salmon kidney (ASK)-II cells. Light and transmission electron microscopy (TEM) revealed that the primary gill cells possessed characteristics consistent with epithelial cells. Virus histochemistry showed that gill epithelial cells expressed 4-O-acetylated sialic acid which is recognized as the ISAV receptor. To the best of our knowledge, this is the first demonstration of ISAV infection in Atlantic salmon primary gill epithelial cells. This study thus broadens our understanding of cell tropism and transmission of ISAV in Atlantic salmon.


Subject(s)
Epithelial Cells/virology , Gills/virology , Isavirus/pathogenicity , Salmo salar/virology , Viral Tropism , Animals , Cell Line , Histocytochemistry , Immunohistochemistry , Isavirus/growth & development , Microscopy, Electron , Receptors, Virus/analysis , Sialic Acids/analysis , Virus Cultivation
17.
J Virol ; 86(19): 10571-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22811536

ABSTRACT

Infectious salmon anemia (ISA) is a World Organization for Animal Health (OIE)-listed disease of farmed Atlantic salmon, characterized by slowly developing anemia and circulatory disturbances. The disease is caused by ISA virus (ISAV) in the Orthomyxoviridae family; hence, it is related to influenza. Here we explore the pathogenesis of ISA by focusing on virus tropism, receptor tissue distribution, and pathological changes in experimentally and naturally infected Atlantic salmon. Using immunohistochemistry on ISAV-infected Atlantic salmon tissues with antibody to viral nucleoprotein, endotheliotropism was demonstrated. Endothelial cells lining the circulatory system were found to be infected, seemingly noncytolytic, and without vasculitis. No virus could be found in necrotic parenchymal cells. From endothelium, the virus budded apically and adsorbed to red blood cells (RBCs). No infection or replication within RBCs was detected, but hemophagocytosis was observed, possibly contributing to the severe anemia in fish with this disease. Similarly to what has been done in studies of influenza, we examined the pattern of virus attachment by using ISAV as a probe. Here we detected the preferred receptor of ISAV, 4-O-acetylated sialic acid (Neu4,5Ac(2)). To our knowledge, this is the first report demonstrating the in situ distribution of this sialic acid derivate. The pattern of virus attachment mirrored closely the distribution of infection, showing that the virus receptor is important for cell tropism, as well as for adsorption to RBCs.


Subject(s)
Erythrocytes/virology , Fish Diseases/virology , Gene Expression Regulation , Orthomyxoviridae Infections/metabolism , Adsorption , Animals , Immunohistochemistry/methods , Leukocytes/cytology , Microscopy, Fluorescence/methods , N-Acetylneuraminic Acid/chemistry , Phagocytosis , Salmo salar , Tissue Distribution , Viral Tropism
18.
Fish Shellfish Immunol ; 32(1): 141-50, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22100613

ABSTRACT

Development of diagnostic and prophylactic methodologies is dependent on knowledge of the host's defence system and reaction to different vaccine adjuvants. Here we present a sequential morphological study of peritonitis and inflammatory cell processing of incomplete Freund's adjuvant (IFA) in intraperitoneally injected Atlantic cod. The peritoneal tissue responses were characterised using necropsy, histology and electron microscopy. An extensive inflammatory response as characterised by leukocyte morphology and contents of enzymes, presence of apoptotic cells and IFN-γ-expressing cells was observed. Three days post injection, IFA droplets were surrounded by different types of inflammatory cells and two different patterns could be discerned. The first was characterised by flattened and concentrically arranged interdigitating cells connected by desmosomes and with macrophage-like cells (MLCs) predominant in the periphery. The second type possessed four stratified layers with an inner layer containing many apoptotic MLCs; a second layer containing flattened and shrunken cells and outer layers comprising moderately flattened cells and an outermost layer of mononuclear cells expressing IFN-γ. Oil was detected both inside and outside MLCs. The two types of processes, of which the second was clearly stratified, were similar to those observed in other teleosts, indicating a variety of reaction modes or alternatively sequential process development. The numerous dead MLCs contributed to inflammation.


Subject(s)
Fish Diseases/chemically induced , Fish Diseases/pathology , Freund's Adjuvant , Gadus morhua/immunology , Lipids , Peritonitis/veterinary , Animals , Fish Diseases/immunology , Fish Diseases/mortality , Interferon-gamma/immunology , Microscopy, Electron, Transmission , Peritonitis/chemically induced , Peritonitis/immunology , Peritonitis/mortality , Peritonitis/pathology , RNA, Messenger/metabolism , Temperature
19.
Virol J ; 8: 49, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21291547

ABSTRACT

Avipoxviruses (APVs) belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated. The virus species Fowlpox virus (FWPV) causes disease in poultry and associated mortality is usually low, but in flocks under stress (other diseases, high production) mortality can reach up to 50%. APVs are also major players in viral vaccine vector development for diseases in human and veterinary medicine. Abortive infection in mammalian cells (no production of progeny viruses) and their ability to accommodate multiple gene inserts are some of the characteristics that make APVs promising vaccine vectors. Although abortive infection in mammalian cells conceivably represents a major vaccine bio-safety advantage, molecular mechanisms restricting APVs to certain hosts are not yet fully understood. This review summarizes the current knowledge relating to APVs, including classification, morphogenesis, host-virus interactions, diagnostics and disease, and also highlights the use of APVs as recombinant vaccine vectors.


Subject(s)
Avipoxvirus/genetics , Avipoxvirus/pathogenicity , Drug Carriers , Genetic Vectors , Viral Vaccines/genetics , Viral Vaccines/immunology , Animals , Bird Diseases/virology , Birds , Humans , Poultry Diseases/virology , Poxviridae Infections/veterinary
20.
In Vitro Cell Dev Biol Anim ; 46(3-4): 276-83, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20177991

ABSTRACT

The maintenance of pluripotency of human embryonic stem cells (hESCs) requires a high efficiency of self-renewal. During in vitro propagation, however, spontaneous differentiation occurs frequently, and there is also a risk of chromosomal changes. In this study, we assessed the properties of hESCs after long-term culture at ambient air and 5% oxygen growth conditions. The hESC lines were grown for up to 42 and 18 mo in normoxic and hypoxic conditions, respectively, and their proliferation; expression of Oct4, SSEA1, Nanog, and Notch1; karyotype; telomerase activity; and differentiation potential in vitro were evaluated. In contrast to cultures at 20% oxygen, where the central zones of the colonies underwent spontaneous differentiation, during exposure to 5% oxygen, the hESC colonies maintained a homogenous and flat morphology that was consistent with the presence of Oct4-positive undifferentiated phenotype. Irrespective of oxygen concentration, the undifferentiated cells expressed high levels of Nanog and Oct4 transcripts, normal karyotype, and high telomerase activity. When assayed for differentiation potential, they yielded derivatives of all three embryonic germ layers. Our data thus indicate that hypoxic exposure has the capacity to sustain enhanced long-term self-renewal of hESCs. The hESC lines described in the current paper can be obtained for research purposes from the Laboratory for Stem Cell Research, Aalborg University.


Subject(s)
Cell Culture Techniques/methods , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Oxygen/pharmacology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Cell Differentiation/drug effects , Cell Hypoxia/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Cells, Cultured , Humans , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...