Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 52(4): 873-885, 2023.
Article in English | MEDLINE | ID: mdl-37145888

ABSTRACT

Phosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated. Results showed that across cropping systems, average annual P budget was 22.4 kg P ha-1 (range = -32.7 to 340.6 kg P ha-1 ), with an average uncertainty of 13.1 kg P ha-1 (range = 1.0-87.1 kg P ha-1 ). Fertilizer/manure application and crop removal were the largest P fluxes across cropping systems and, as a result, accounted for the largest fraction of uncertainty in annual budgets (61% and 37%, respectively). Remaining fluxes individually accounted for <2% of the budget uncertainty. Uncertainties were large enough that determining whether P was increasing, decreasing, or not changing was inconclusive in 39% of the budgets evaluated. Findings indicate that more careful and/or direct measurements of inputs, outputs, and stocks are needed. Recommendations for minimizing uncertainty in P budgets based on the results of the study were developed. Quantifying, communicating, and constraining uncertainty in budgets among production systems and multiple geographies is critical for engaging stakeholders, developing local and national strategies for P reduction, and informing policy.


Subject(s)
Fertilizers , Phosphorus , Manure , Uncertainty , Agriculture
2.
J Environ Qual ; 49(2): 378-391, 2020 Mar.
Article in English | MEDLINE | ID: mdl-33016419

ABSTRACT

The persistent environmental relevance of phosphorus (P) and P sorption capacity (PSC) on P loss to surface waters has led to proposals for its inclusion in soil fertility and environmental management programs. As fertility and environmental management decisions are made on a routine basis, the use of laborious P sorption isotherms to quantify PSC is not feasible. Alternatively, pedotransfer functions (pedoTFs) estimate PSC from routinely assessed soil chemical properties. Our objective was to examine the possibility of developing a suitable pedoTF for estimating PSC and to evaluate subsequent PSC-based indices (P saturation ratio [PSR] and soil P storage capacity [SPSC]) using data from an in-field laboratory where tile drain effluent is monitored daily. Phosphorus sorption capacity was well predicted by a pedoTF derived from soil aluminum and organic matter (R² = .60). Segmented-line relationships between PSR and soluble P were observed in both desorption assays (R² = .69) and drainflows (R² = .66) with apparent PSR thresholds in close agreement at 0.21 and 0.24, respectively. Negative SPSC values exhibited linear relationships with increasing soluble P concentrations in both desorption assays and drainflows (R² = .52 and R2  = .53 respectively), whereas positive SPSC values were associated with low SP concentrations. Therefore, PSC-based indices determined using pedoTFs could estimate the potential for subsurface soluble P losses. Also, we determined that both index thresholds coincided with the critical soil-test P level for agronomic P sufficiency (22 mg kg-1 Mehlich-3 P) suggesting that the agronomic threshold could serve as an environmental P threshold.


Subject(s)
Phosphorus , Soil Pollutants/analysis , Aluminum , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...