Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 13(1): 563-572, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36644649

ABSTRACT

Simple petrochemical feedstocks are often the starting material for the synthesis of complex commodity and fine and specialty chemicals. Designing synthetic pathways for these complex and specific molecular structures with sufficient chemo-, regio-, enantio-, and diastereo-selectivity can expand the existing petrochemicals landscape. The two overarching challenges in designing such pathways are selective activation of chemically inert C-H bonds in hydrocarbons and systematic functionalization to synthesize complex structures. Multienzyme cascades are becoming a growing means of overcoming the first challenge. However, extending multienzyme cascade designs is restricted by the arsenal of enzymes currently at our disposal and the compatibility between specific enzymes. Here, we couple a bioelectrocatalytic multienzyme cascade to organocatalysis, which are two distinctly different classes of catalysis, in a single system to address both challenges. Based on the development and utilization of an anthraquinone (AQ)-based redox polymer, the bioelectrocatalytic step achieves regioselective terminal C-H bond oxyfunctionalization of chemically inert n-heptane. A second biocatalytic step selectively oxidizes the resulting 1-heptanol to heptanal. The succeeding inherently simple and durable l-proline-based organocatalysis step is a complementary partner to the multienzyme steps to further functionalize heptanal to the corresponding α-hydrazino aldehyde. The "three-stage" streamlined design exerts much control over the chemical conversion, which renders the collective system a versatile and adaptable model for a broader substrate scope and more complex C-H functionalization.

2.
J Am Chem Soc ; 144(9): 4047-4056, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35073694

ABSTRACT

Petroleum hydrocarbons are our major energy source and an important feedstock for the chemical industry. With the exception of combustion, the deep conversion of chemically inert hydrocarbons to more valuable chemicals is of considerable interest. However, two challenges hinder this conversion. One is the regioselective activation of inert carbon-hydrogen (C-H) bonds. The other is designing a pathway to realize this complicated conversion. In response to the two challenges, a multistep bioelectrocatalytic system was developed to realize the one-pot deep conversion from heptane to N-heptylhepan-1-imine under mild conditions. First, in this enzymatic cascade, a bioelectrocatalytic C-H bond oxyfunctionalization step based on alkane hydroxylase (alkB) was applied to regioselectively convert heptane to 1-heptanol. By integrating subsequent alcohol oxidation and bioelectrocatalytic reductive amination steps based on an engineered choline oxidase (AcCO6) and a reductive aminase (NfRedAm), the generated 1-heptanol was successfully converted to N-heptylhepan-1-imine. The electrochemical architecture provided sufficient electrons to drive the bioelectrocatalytic C-H bond oxyfunctionalization and reductive amination steps with neutral red (NR) as electron mediator. The highest concentration of N-heptylhepan-1-imine achieved was 0.67 mM with a Faradaic efficiency of 45% for C-H bond oxyfunctionalization and 70% for reductive amination. Hexane, octane, and ethylbenzene were also successfully converted to the corresponding imines. Via regioselective C-H bond oxyfunctionalization, intermediate oxidation, and reductive amination, the bioelectrocatalytic hydrocarbon deep conversion system successfully realized the challenging conversion from inert hydrocarbons to imines that would have been impossible by using organic synthesis methods and provided a new methodology for the comprehensive conversion and utilization of inert hydrocarbons.


Subject(s)
Hydrocarbons , Imines , Amination , Heptanes , Heptanol , Imines/chemistry
3.
Photochem Photobiol Sci ; 20(10): 1333-1356, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34550560

ABSTRACT

Photobioelectrocatalysis has recently attracted particular research interest owing to the possibility to achieve sunlight-driven biosynthesis, biosensing, power generation, and other niche applications. However, physiological incompatibilities between biohybrid components lead to poor electrical contact at the biotic-biotic and biotic-abiotic interfaces. Establishing an electrochemical communication between these different interfaces, particularly the biocatalyst-electrode interface, is critical for the performance of the photobioelectrocatalytic system. While different artificial redox mediating approaches spanning across interdisciplinary research fields have been developed in order to electrically wire biohybrid components during bioelectrocatalysis, a systematic understanding on physicochemical modulation of artificial redox mediators is further required. Herein, we review and discuss the use of diffusible redox mediators and redox polymer-based approaches in artificial redox-mediating systems, with a focus on photobioelectrocatalysis. The future possibilities of artificial redox mediator system designs are also discussed within the purview of present needs and existing research breadth.

4.
Langmuir ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34132548

ABSTRACT

Photobioelectrocatalysis (PBEC) adopts the sophistication and sustainability of photosynthetic units to convert solar energy into electrical energy. However, the electrically insulating outer membranes of photosynthetic units hinder efficient extracellular electron transfer from photosynthetic redox centers to an electrode in photobioelectrocatalytic systems. Among the artificial redox-mediating approaches used to enhance electrochemical communication at this biohybrid interface, conducting redox polymers (CRPs) are characterized by high intrinsic electric conductivities for efficient charge transfer. A majority of these CRPs constitute peripheral redox pendants attached to a conducting backbone by a linker. The consequently branched CRPs necessitate maintaining synergistic interactions between the pendant, linker, and backbone for optimal mediator performance. Herein, an unbranched, metal-free CRP, polydihydroxy aniline (PDHA), which has its redox moiety embedded in the polymer mainchain, is used as an exogenous redox mediator and an immobilization matrix at the biohybrid interface. As a proof of concept, the relatively complex membrane system of spinach chloroplasts is used as the photobioelectrocatalyst of choice. A "mixed" deposition of chloroplasts and PDHA generated a 2.4-fold photocurrent density increment. An alternative "layered" PDHA-chloroplast deposition, which was used to control panchromatic light absorbance by the intensely colored PDHA competing with the photoactivity of chloroplasts, generated a 4.2-fold photocurrent density increment. The highest photocurrent density recorded with intact chloroplasts was achieved by the "layered" deposition when used in conjunction with the diffusible redox mediator 2,6-dichlorobenzoquinone (-48 ± 3 µA cm-2). Our study effectively expands the scope of germane CRPs in PBEC, emphasizing the significance of the rational selection of CRPs for electrically insulating photobioelectrocatalysts and of the holistic modulation of the CRP-mediated biohybrids for optimal performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...