Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 4: e632, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23681227

ABSTRACT

Disrupting inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)/B-cell lymphoma 2 (Bcl-2) complexes using a cell-permeable peptide (stabilized TAT-fused IP3R-derived peptide (TAT-IDP(S))) that selectively targets the BH4 domain of Bcl-2 but not that of B-cell lymphoma 2-extra large (Bcl-Xl) potentiated pro-apoptotic Ca(2+) signaling in chronic lymphocytic leukemia cells. However, the molecular mechanisms rendering cancer cells but not normal cells particularly sensitive to disrupting IP3R/Bcl-2 complexes are poorly understood. Therefore, we studied the effect of TAT-IDP(S) in a more heterogeneous Bcl-2-dependent cancer model using a set of 'primed to death' diffuse large B-cell lymphoma (DL-BCL) cell lines containing elevated Bcl-2 levels. We discovered a large heterogeneity in the apoptotic responses of these cells to TAT-IDP(S) with SU-DHL-4 being most sensitive and OCI-LY-1 being most resistant. This sensitivity strongly correlated with the ability of TAT-IDP(S) to promote IP3R-mediated Ca(2+) release. Although total IP3R-expression levels were very similar among SU-DHL-4 and OCI-LY-1, we discovered that the IP3R2-protein level was the highest for SU-DHL-4 and the lowest for OCI-LY-1. Strikingly, TAT-IDP(S)-induced Ca(2+) rise and apoptosis in the different DL-BCL cell lines strongly correlated with their IP3R2-protein level, but not with IP3R1-, IP3R3- or total IP3R-expression levels. Inhibiting or knocking down IP3R2 activity in SU-DHL-4-reduced TAT-IDP(S)-induced apoptosis, which is compatible with its ability to dissociate Bcl-2 from IP3R2 and to promote IP3-induced pro-apoptotic Ca(2+) signaling. Thus, certain chronically activated B-cell lymphoma cells are addicted to high Bcl-2 levels for their survival not only to neutralize pro-apoptotic Bcl-2-family members but also to suppress IP3R hyperactivity. In particular, cancer cells expressing high levels of IP3R2 are addicted to IP3R/Bcl-2 complex formation and disruption of these complexes using peptide tools results in pro-apoptotic Ca(2+) signaling and cell death.


Subject(s)
Apoptosis/drug effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Peptides/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Calcium/metabolism , Cell Line, Tumor , Humans , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate Receptors/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Peptides/chemistry , Protein Binding , Protein Isoforms/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , RNA Interference , RNA, Small Interfering/metabolism
2.
Cell Calcium ; 51(6): 452-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22456092

ABSTRACT

Autosomal dominant polycystic kidney disease is caused by loss-of-function mutations in the PKD1 or PKD2 genes encoding respectively polycystin-1 and polycystin-2. Polycystin-2 stimulates the inositol trisphosphate (IP(3)) receptor (IP(3)R), a Ca(2+)-release channel in the endoplasmic reticulum (ER). The effect of ER-located polycystin-1 is less clear. Polycystin-1 has been reported both to stimulate and to inhibit the IP(3)R. We now studied the effect of polycystin-1 and of polycystin-2 on the IP(3)R activity under conditions where the cytosolic Ca(2+) concentration was kept constant and the reuptake of released Ca(2+) was prevented. We also studied the interdependence of the interaction of polycystin-1 and polycystin-2 with the IP(3)R. The experiments were done in conditionally immortalized human proximal-tubule epithelial cells in which one or both polycystins were knocked down using lentiviral vectors containing miRNA-based short hairpins. The Ca(2+) release was induced in plasma membrane-permeabilized cells by various IP(3) concentrations at a fixed Ca(2+) concentration under unidirectional (45)Ca(2+)-efflux conditions. We now report that knock down of polycystin-1 or of polycystin-2 inhibited the IP(3)-induced Ca(2+) release. The simultaneous presence of the two polycystins was required to fully amplify the IP(3)-induced Ca(2+) release, since the presence of polycystin-1 alone or of polycystin-2 alone did not result in an increased Ca(2+) release. These novel findings indicate that ER-located polycystin-1 and polycystin-2 operate as a functional complex. They are compatible with the view that loss-of-function mutations in PKD1 and in PKD2 both cause autosomal dominant polycystic kidney disease.


Subject(s)
Calcium Signaling , Calcium/metabolism , Inositol 1,4,5-Trisphosphate/pharmacology , TRPP Cation Channels/metabolism , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane Permeability , Cytosol/metabolism , Epithelium/metabolism , Epithelium/pathology , Feeder Cells , Gene Knockdown Techniques , Genetic Vectors/genetics , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Lentivirus/genetics , Mice , MicroRNAs/genetics , NIH 3T3 Cells , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Primary Cell Culture , Protein Interaction Mapping , TRPP Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...