Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Glia ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899762

ABSTRACT

The neurometabolic disorder succinic semialdehyde dehydrogenase (SSADH) deficiency leads to great neurochemical imbalances and severe neurological manifestations. The cause of the disease is loss of function of the enzyme SSADH, leading to impaired metabolism of the principal inhibitory neurotransmitter GABA. Despite the known identity of the enzymatic deficit, the underlying pathology of SSADH deficiency remains unclear. To uncover new mechanisms of the disease, we performed an untargeted integrative analysis of cerebral protein expression, functional metabolism, and lipid composition in a genetic mouse model of SSADH deficiency (ALDH5A1 knockout mice). Our proteomic analysis revealed a clear regional vulnerability, as protein alterations primarily manifested in the hippocampus and cerebral cortex of the ALDH5A1 knockout mice. These regions displayed aberrant expression of proteins linked to amino acid homeostasis, mitochondria, glial function, and myelination. Stable isotope tracing in acutely isolated brain slices demonstrated an overall maintained oxidative metabolism of glucose, but a selective decrease in astrocyte metabolic activity in the cerebral cortex of ALDH5A1 knockout mice. In contrast, an elevated capacity of oxidative glutamine metabolism was observed in the ALDH5A1 knockout brain, which may serve as a neuronal compensation of impaired astrocyte glutamine provision. In addition to reduced expression of critical oligodendrocyte proteins, a severe depletion of myelin-enriched sphingolipids was found in the brains of ALDH5A1 knockout mice, suggesting degeneration of myelin. Altogether, our study highlights that impaired astrocyte and oligodendrocyte function is intimately linked to SSADH deficiency pathology, suggesting that selective targeting of glial cells may hold therapeutic potential in this disease.

5.
Sleep ; 46(9)2023 09 08.
Article in English | MEDLINE | ID: mdl-37210587

ABSTRACT

Narcolepsy type 1 (NT1) is a neurological disorder caused by disruption of hypocretin (HCRT; or orexin) neurotransmission leading to fragmented sleep/wake states, excessive daytime sleepiness, and cataplexy (abrupt muscle atonia during wakefulness). Electroencephalography and electromyography (EEG/EMG) monitoring is the gold standard to assess NT1 phenotypical features in both humans and mice. Here, we evaluated the digital ventilated home-cage (DVC®) activity system as an alternative to detect NT1 features in two NT1 mouse models: the genetic HCRT-knockout (-KO) model, and the inducible HCRT neuron-ablation hcrt-tTA;TetO-DTA (DTA) model, including both sexes. NT1 mice exhibited an altered dark phase activity profile and increased state transitions, compared to the wild-type (WT) phenotype. An inability to sustain activity periods >40 min represented a robust activity-based NT1 biomarker. These features were observable within the first weeks of HCRT neuron degeneration in DTA mice. We also created a nest-identification algorithm to differentiate between inactivity and activity, inside and outside the nest as a sleep and wake proxy, respectively, showing significant correlations with EEG/EMG-assessed sleep/wake behavior. Lastly, we tested the sensitivity of the activity system to detect behavioral changes in response to interventions such as repeated saline injection and chocolate. Surprisingly, daily consecutive saline injections significantly reduced activity and increased nest time of HCRT-WT mice. Chocolate increased total activity in all mice, and increased the frequency of short out-of-nest inactivity episodes in HCRT-KO mice. We conclude that the DVC® system provides a useful tool for non-invasive monitoring of NT1 phenotypical features, and has the potential to monitor drug effects in NT1 mice.


Subject(s)
Narcolepsy , Neuropeptides , Humans , Male , Female , Mice , Animals , Orexins/pharmacology , Neuropeptides/genetics , Narcolepsy/diagnosis , Narcolepsy/genetics , Sleep/physiology , Wakefulness/physiology , Disease Progression
6.
Mol Cell Proteomics ; 22(5): 100543, 2023 05.
Article in English | MEDLINE | ID: mdl-37030595

ABSTRACT

Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIß (CaMKIIß). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIß, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.


Subject(s)
Cell Death , Neurons , Synapses , Animals , Male , Mice , Rats , Calpain/metabolism , Cells, Cultured , Cysteine Proteinase Inhibitors/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neurons/pathology , Neurons/physiology , Neuroprotection , Proteome/analysis , Rats, Wistar , Stroke/pathology , Synapses/pathology , Synapses/physiology
7.
J Cereb Blood Flow Metab ; 43(8): 1419-1434, 2023 08.
Article in English | MEDLINE | ID: mdl-37026450

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a major contributor to physiological and pathological glutamate-mediated Ca2+ signals, and its involvement in various critical cellular pathways demands specific pharmacological strategies. We recently presented γ-hydroxybutyrate (GHB) ligands as the first small molecules selectively targeting and stabilizing the CaMKIIα hub domain. Here, we report that the cyclic GHB analogue 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA), improves sensorimotor function after experimental stroke in mice when administered at a clinically relevant time and in combination with alteplase. Further, we observed improved hippocampal neuronal activity and working memory after stroke. On the biochemical level, we observed that hub modulation by HOCPCA results in differential effects on distinct CaMKII pools, ultimately alleviating aberrant CaMKII signalling after cerebral ischemia. As such, HOCPCA normalised cytosolic Thr286 autophosphorylation after ischemia in mice and downregulated ischemia-specific expression of a constitutively active CaMKII kinase proteolytic fragment. Previous studies suggest holoenzyme stabilisation as a potential mechanism, yet a causal link to in vivo findings requires further studies. Similarly, HOCPCA's effects on dampening inflammatory changes require further investigation as an underlying protective mechanism. HOCPCA's selectivity and absence of effects on physiological CaMKII signalling highlight pharmacological modulation of the CaMKIIα hub domain as an attractive neuroprotective strategy.


Subject(s)
Sodium Oxybate , Stroke , Mice , Animals , Sodium Oxybate/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cognition
8.
J Neurochem ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949663

ABSTRACT

Ca2+ /calmodulin-dependent protein kinase II alpha (CaMKIIα) is a key regulator of neuronal signaling and synaptic plasticity. Synaptic activity and neurotransmitter homeostasis are closely coupled to the energy metabolism of both neurons and astrocytes. However, whether CaMKIIα function is implicated in brain energy and neurotransmitter metabolism remains unclear. Here, we explored the metabolic consequences of CaMKIIα deletion in the cerebral cortex using a genetic CaMKIIα knockout (KO) mouse. Energy and neurotransmitter metabolism was functionally investigated in acutely isolated cerebral cortical slices using stable 13 C isotope tracing, whereas the metabolic function of synaptosomes was assessed by the rates of glycolytic activity and mitochondrial respiration. The oxidative metabolism of [U-13 C]glucose was extensively reduced in cerebral cortical slices of the CaMKIIα KO mice. In contrast, metabolism of [1,2-13 C]acetate, primarily reflecting astrocyte metabolism, was unaffected. Cellular uptake, and subsequent metabolism, of [U-13 C]glutamate was decreased in cerebral cortical slices of CaMKIIα KO mice, whereas uptake and metabolism of [U-13 C]GABA were unaffected, suggesting selective metabolic impairments of the excitatory system. Synaptic metabolic function was maintained during resting conditions in isolated synaptosomes from CaMKIIα KO mice, but both the glycolytic and mitochondrial capacities became insufficient when the synaptosomes were metabolically challenged. Collectively, this study shows that global deletion of CaMKIIα significantly impairs cellular energy and neurotransmitter metabolism, particularly of neurons, suggesting a metabolic role of CaMKIIα signaling in the brain.

9.
Essays Biochem ; 67(1): 77-91, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36806927

ABSTRACT

Synaptic regulation of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) is essential for brain function. Cerebral GABA homeostasis is tightly regulated through multiple mechanisms and is directly coupled to the metabolic collaboration between neurons and astrocytes. In this essay, we outline and discuss the fundamental roles of astrocytes in regulating synaptic GABA signaling. A major fraction of synaptic GABA is removed from the synapse by astrocytic uptake. Astrocytes utilize GABA as a metabolic substrate to support glutamine synthesis. The astrocyte-derived glutamine is subsequently transferred to neurons where it serves as the primary precursor of neuronal GABA synthesis. The flow of GABA and glutamine between neurons and astrocytes is collectively termed the GABA-glutamine cycle and is essential to sustain GABA synthesis and inhibitory signaling. In certain brain areas, astrocytes are even capable of synthesizing and releasing GABA to modulate inhibitory transmission. The majority of oxidative GABA metabolism in the brain takes place in astrocytes, which also leads to synthesis of the GABA-related metabolite γ-hydroxybutyric acid (GHB). The physiological roles of endogenous GHB remain unclear, but may be related to regulation of tonic inhibition and synaptic plasticity. Disrupted inhibitory signaling and dysfunctional astrocyte GABA handling are implicated in several diseases including epilepsy and Alzheimer's disease. Synaptic GABA homeostasis is under astrocytic control and astrocyte GABA uptake, metabolism, and recycling may therefore serve as relevant targets to ameliorate pathological inhibitory signaling.


Subject(s)
Astrocytes , Sodium Oxybate , Astrocytes/metabolism , Glutamine/metabolism , Sodium Oxybate/metabolism , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
10.
Brain Sci ; 12(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36552099

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+-dependent signaling pathways in various cell types throughout the body. Its neuronal isoform CaMKIIα (alpha) centrally integrates physiological but also pathological glutamate signals directly downstream of glutamate receptors and has thus emerged as a target for ischemic stroke. Previous studies provided evidence for the involvement of CaMKII activity in ischemic cell death by showing that CaMKII inhibition affords substantial neuroprotection. However, broad inhibition of this central kinase is challenging because various essential physiological processes like synaptic plasticity rely on intact CaMKII regulation. Thus, specific strategies for targeting CaMKII after ischemia are warranted which would ideally only interfere with pathological activity of CaMKII. This review highlights recent advances in the understanding of how ischemia affects CaMKII and how pathospecific pharmacological targeting of CaMKII signaling could be achieved. Specifically, we discuss direct targeting of CaMKII kinase activity with peptide inhibitors versus indirect targeting of the association (hub) domain of CaMKIIα with analogues of γ-hydroxybutyrate (GHB) as a potential way to achieve more specific pharmacological modulation of CaMKII activity after ischemia.

11.
J Med Chem ; 65(22): 15066-15084, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36346645

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a brain-relevant kinase and an emerging drug target for ischemic stroke and neurodegenerative disorders. Despite reported CaMKIIα inhibitors, their usefulness is limited by low subtype selectivity and brain permeability. (E)-2-(5-Hydroxy-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (NCS-382) is structurally related to the proposed neuromodulator, γ-hydroxybutyric acid, and is a brain-penetrating high nanomolar-affinity ligand selective for the CaMKIIα hub domain. Herein, we report the first series of NCS-382 analogs displaying improved affinity and preserved brain permeability. Specifically, we present Ph-HTBA (1i) with enhanced mid-nanomolar affinity for the CaMKIIα binding site and a marked hub thermal stabilization effect along with a distinct CaMKIIα Trp403 flip upon binding. Moreover, Ph-HTBA has good cellular permeability and low microsomal clearance and shows brain permeability after systemic administration to mice, signified by a high Kp, uu value (0.85). Altogether, our study highlights Ph-HTBA as a promising candidate for CaMKIIα-associated pharmacological interventions and future clinical development.


Subject(s)
Benzocycloheptenes , Brain , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Animals , Mice , Benzocycloheptenes/pharmacology , Binding Sites , Brain/metabolism , Protein Binding , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors
12.
Biomed Pharmacother ; 156: 113895, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274464

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a potential target for acute neuroprotection due to its key role in physiological and pathological glutamate signaling. The hub domain organizes the CaMKII holoenzyme into large oligomers, and additional functional effects on holoenzyme activation have lately emerged. We recently reported that compounds related to the proposed neuromodulator γ-hydroxybutyrate (GHB) selectively bind to the CaMKIIα hub domain and increase hub thermal stabilization, which is believed to have functional consequences and to mediate neuroprotection. However, the detailed molecular mechanism is unknown. In this study, we functionally characterize the novel and brain permeable GHB analog (E)-2-(5-hydroxy-2-phenyl-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (Ph-HTBA). Administration of a single dose of Ph-HTBA at a clinically relevant time point (3-6 h after photothrombotic stroke) promotes neuroprotection with a superior effect at low doses compared to the smaller GHB analog 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA). In contrast to HOCPCA, Ph-HTBA reduces Ca2+-stimulated CaMKIIα Thr286 autophosphorylation in primary cortical neurons and substrate phosphorylation of recombinant CaMKIIα, potentially contributing to its neuroprotective effect. Supported by previous in silico docking studies, we suggest that Ph-HTBA makes distinct molecular interactions with the hub cavity, which may contribute to its differential functional profile and superior neuroprotective effect compared to HOCPCA. Together, this highlights Ph-HTBA as a promising tool to study hub functionality, but also as a good candidate for clinical development.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Sodium Oxybate , Humans , Ligands , Sodium Oxybate/metabolism , Neuroprotection , Neuroprotective Agents/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Holoenzymes
13.
J Pharmacol Toxicol Methods ; 118: 107226, 2022.
Article in English | MEDLINE | ID: mdl-36174932

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a multifunctional Ser/Thr kinase involved in several neuronal signaling pathways including synaptic plasticity. CaMKIIα autonomous activity is highly dependent on Thr286 autophosphorylation (pThr286), which is widely used as a readout for its enzymatic activity. To readily characterise compounds and potential drug candidates targeting CaMKIIα, a simple, generic cell-based assay for quantification of pThr286 levels is needed. In this study, we present a cell-based assay using an adapted ELISA as a suitable and higher throughput alternative to Western blotting. In this 96-well plate-based assay, we use whole HEK293T cells recombinantly expressing CaMKIIα and apply a phospho-specific antibody to detect pThr286 levels by chemiluminescence. In parallel, total CaMKIIα expression levels are detected by fluorescence using an Alexa488-conjugated anti-myc antibody targeting a C-terminal myc-tag. By multiplexing chemiluminescence and fluorescence, phosphorylation levels are normalised to CaMKIIα total expression within each well. The specificity of the assay was confirmed using a phosphodead mutant (T286A) of CaMKIIα. By applying Ca2+ or known CaMKIIα inhibitors (KN93, tatCN21 and AS100105) and obtaining concentration-response curves, we demonstrate high sensitivity and validity of the assay. Lastly, we demonstrate the versatility of the assay by determining autophosphorylation levels in CaMKIIα patient-related mutations, known to possess altered pThr286 responses (E109D, E183V and H282R). The established assay for CaMKIIα is a reproducible, easily implemented, and facile ELISA-based assay that allows for reliable quantification of pThr286 levels.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Signal Transduction , Humans , Phosphorylation , HEK293 Cells , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Enzyme-Linked Immunosorbent Assay
14.
Org Lett ; 24(23): 4151-4154, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35674784

ABSTRACT

Novel γ-aminobutyric acid (GABA) analogues 3-5, having a bicyclo[3.1.0]hexene, [4.1.0]heptane, or [4.1.0]heptene backbone, respectively, were designed from the bioactive form analysis of the previous inhibitor 2 with a bicyclo[3.1.0]hexane backbone. Compounds 3-5 and 2 were synthesized from a common 1,7-diene intermediate 6 using ring-closing metathesis (RCM) to construct the key bicyclo backbones. Compounds 3-5 strongly inhibit betaine/GABA transporter 1 (BGT1) uptake, but compound 4 stands out with its selective low micromolar potency.


Subject(s)
Betaine , Heptanes , Alkenes , GABA Plasma Membrane Transport Proteins , Heptanes/pharmacology , Hexanes , gamma-Aminobutyric Acid/pharmacology
15.
Pharmaceutics ; 14(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35631505

ABSTRACT

Clove oil (CO), an essential oil of Syzygium aromaticum, has been reported as an anesthetic for many fish species. However, its insoluble properties require a suitable delivery system for its application. In the present study, nanoformulations of CO as a nanoemulsion (CO-NE), a self-microemulsifying drug-delivery system (CO-SMEDDS), and a self-nanoemulsifying drug-delivery system (CO-SNEDDS) were prepared for delivering CO. Zebrafish were used as a fish model to investigate oil pathways. The result shows fluorescence spots of fluorescence-labeled CO accumulate on the gills, skin, and brain. All CO nanoformulations significantly increased penetration flux compared to CO ethanolic solution. Investigation of the anesthetic mechanism of action using a rat brain γ-aminobutyric acid subtype A (GABAA) receptor-binding test demonstrates that CO and its major compound, eugenol, modulate [3H]muscimol binding. CO-NE exhibited a concentration-dependent binding activity with an EC50 value of 175 µg/mL, significantly higher than CO solution in dimethyl sulfoxide. In conclusion, CO enters the fish through the skin and gills. The anesthetic mechanism of action of CO is based on modulation of [3H] muscimol binding to GABAA receptors. Among three nanoformulations tested, CO-NE is the most effective at increasing permeability and enhancing the receptor-binding activity of the oil.

16.
J Med Chem ; 65(9): 6656-6676, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35500061

ABSTRACT

The Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) is a brain-relevant kinase involved in long-term potentiation and synaptic plasticity. We have recently pinpointed the CaMKIIα hub domain as the long-sought-after high-affinity target of γ-hydroxybutyrate ligands substantiated with a high-resolution cocrystal of 5-hydroxydiclofenac (3). Herein, we employed in silico approaches to rationalize and guide the synthesis and pharmacological characterization of a new series of analogues circumventing chemical stability problems associated with 3. The oxygen-bridged analogue 4d showed mid-nanomolar affinity and notable ligand-induced stabilization effects toward the CaMKIIα hub oligomer. Importantly, 4d displayed superior chemical and metabolic stability over 3 by showing excellent chemical stability in phosphate-buffered saline and high resistance to form reactive intermediates and subsequent sulfur conjugates. Altogether, our study highlights 4d as a new CaMKIIα hub high-affinity ligand with enhanced pharmacokinetic properties, representing a powerful tool compound for allosteric regulation of kinase activity with subtype specificity.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Diclofenac , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Diclofenac/analogs & derivatives , Ligands , Long-Term Potentiation
17.
Pharmaceutics ; 14(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336025

ABSTRACT

The anesthetic effect of Alpinia galanga oil (AGO) has been reported. However, knowledge of its pathway in mammals is limited. In the present study, the binding of AGO and its key compounds, methyl eugenol, 1,8-cineole, and 4-allylphenyl acetate, to gamma-aminobutyric acid type A (GABAA) receptors in rat cortical membranes, was investigated using a [3H]muscimol binding assay and an in silico modeling platform. The results showed that only AGO and methyl eugenol displayed a positive modulation at the highest concentrations, whereas 1,8-cineole and 4-allylphenyl acetate were inactive. The result of AGO correlated well to the amount of methyl eugenol in AGO. Computational docking and dynamics simulations into the GABAA receptor complex model (PDB: 6X3T) showed the stable structure of the GABAA receptor-methyl eugenol complex with the lowest binding energy of -22.16 kcal/mol. This result shows that the anesthetic activity of AGO and methyl eugenol in mammals is associated with GABAA receptor modulation. An oil-in-water nanoemulsion containing 20% w/w AGO (NE-AGO) was formulated. NE-AGO showed a significant increase in specific [3H]muscimol binding, to 179% of the control, with an EC50 of 391 µg/mL. Intracellular studies show that normal human cells are highly tolerant to AGO and the nanoemulsion, indicating that NE-AGO may be useful for human anesthesia.

18.
J Med Chem ; 64(24): 17795-17812, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34908407

ABSTRACT

The 3,9-diazaspiro[5.5]undecane-based compounds 2027 and 018 have previously been reported to be potent competitive γ-aminobutyric acid type A receptor (GABAAR) antagonists showing low cellular membrane permeability. Given the emerging peripheral application of GABAAR ligands, we hypothesize 2027 analogs as promising lead structures for peripheral GABAAR inhibition. We herein report a study on the structural determinants of 2027 in order to suggest a potential binding mode as a basis for rational design. The study identified the importance of the spirocyclic benzamide, compensating for the conventional acidic moiety, for GABAAR ligands. The structurally simplified m-methylphenyl analog 1e displayed binding affinity in the high-nanomolar range (Ki = 180 nM) and was superior to 2027 and 018 regarding selectivity for the extrasynaptic α4ßδ subtype versus the α1- and α2- containing subtypes. Importantly, 1e was shown to efficiently rescue inhibition of T cell proliferation, providing a platform to explore the immunomodulatory potential for this class of compounds.


Subject(s)
Adjuvants, Immunologic/pharmacology , Alkanes/pharmacology , GABA Antagonists/pharmacology , Receptors, GABA-A/drug effects , Adjuvants, Immunologic/chemistry , Alkanes/chemistry , Cell Proliferation/drug effects , GABA Antagonists/chemistry , Humans , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects
19.
Front Chem ; 9: 736457, 2021.
Article in English | MEDLINE | ID: mdl-34595152

ABSTRACT

The betaine/GABA transporter 1 (BGT1) is a member of the GABA transporter (GAT) family with still elusive function, largely due to a lack of potent and selective tool compounds. Based on modeling, we here present the design, synthesis and pharmacological evaluation of five novel conformationally restricted cyclic GABA analogs related to the previously reported highly potent and selective BGT1 inhibitor (1S,2S,5R)-5-aminobicyclo[3.1.0]hexane-2-carboxylic acid (bicyclo-GABA). Using [3H]GABA radioligand uptake assays at the four human GATs recombinantly expressed in mammalian cell lines, we identified bicyclo-GABA and its N-methylated analog (2) as the most potent and selective BGT1 inhibitors. Additional pharmacological characterization in a fluorescence-based membrane potential assay showed that bicyclo-GABA and 2 are competitive inhibitors, not substrates, at BGT1, which was validated by a Schild analysis for bicyclo-GABA (pK B value of 6.4). To further elaborate on the selectivity profile both compounds were tested at recombinant α1ß2γ2 GABAA receptors. Whereas bicyclo-GABA showed low micromolar agonistic activity, the N-methylated 2 was completely devoid of activity at GABAA receptors. To further reveal the binding mode of bicyclo-GABA and 2 binding hypotheses of the compounds were obtained from in silico-guided mutagenesis studies followed by pharmacological evaluation at selected BGT1 mutants. This identified the non-conserved BGT1 residues Q299 and E52 as the molecular determinants driving BGT1 activity and selectivity. The binding mode of bicyclo-GABA was further validated by the introduction of activity into the corresponding GAT3 mutant L314Q (38 times potency increase cf. wildtype). Altogether, our data reveal the molecular determinants for the activity of bicyclic GABA analogs, that despite their small size act as competitive inhibitors of BGT1. These compounds may serve as valuable tools to selectively and potently target BGT1 in order to decipher its elusive pharmacological role in the brain and periphery such as the liver and kidneys.

20.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34330837

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Sodium Oxybate/metabolism , Binding Sites , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Carboxylic Acids/pharmacology , Crystallography, X-Ray , Cyclopentanes/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , HEK293 Cells , Humans , Neuroprotection , Protein Binding , Protein Domains , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...