Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 61(10): 25, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32785677

ABSTRACT

Purpose: To determine the effect of mycophenolate mofetil (MMF) on retinal degeneration on two mouse models of retinitis pigmentosa. Methods: Intraperitoneal injections of MMF were administered daily in rd10 and c57 mice starting at postoperative day 12 (P12) and rd1 mice starting at P8. The effect of MMF was assessed with optical coherence tomography, immunohistochemistry, electroretinography, and OptoMotry. Whole retinal cyclic guanosine monophosphate (cGMP) and mycophenolic acid levels were quantified with mass spectrometry. Photoreceptor cGMP cytotoxicity was evaluated with cell counts of cGMP immunostaining. Results: MMF treatment significantly delays the onset of retinal degeneration and cGMP-dependent photoreceptor cytotoxicity in rd10 and rd1 mice, albeit a more modest effect in the latter. In rd10 mice, treatment with MMF showed robust preservation of the photoreceptors up to P22 with associated suppression of cGMP immunostaining and microglial activation; The neuroprotective effect diminished after P22, but outer retinal thickness was still significantly thicker by P35 and OptoMotry response was significantly better up to P60. Whereas cGMP immunostaining of the photoreceptors were present in rd10 and rd1 mice, hyperphysiological whole retinal cGMP levels were observed only in rd1 mice. Conclusions: Early treatment with MMF confers potent neuroprotection in two animal models of RP by suppressing the cGMP-dependent common pathway for photoreceptor cell death. The neuroprotective effect of MMF on cGMP-dependent cytotoxicity occurs independently of the presence of hyperphysiological whole retinal cGMP levels. Thus our data suggest that MMF may be an important new class of neuroprotective agent that could be useful in the treatment of patients with RP.


Subject(s)
Cyclic GMP/metabolism , Mycophenolic Acid/therapeutic use , Neuroprotective Agents/therapeutic use , Photoreceptor Cells, Vertebrate/drug effects , Retinitis Pigmentosa/drug therapy , Animals , Disease Models, Animal , Electroretinography , Mass Spectrometry , Mice , Mice, Inbred C57BL , Retina/diagnostic imaging , Retina/enzymology , Retina/pathology , Retinitis Pigmentosa/diagnostic imaging , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/prevention & control , Tomography, Optical Coherence
2.
J Control Release ; 303: 91-100, 2019 06 10.
Article in English | MEDLINE | ID: mdl-30986436

ABSTRACT

Retinal gene therapy has had unprecedented success in generating treatments that can halt vision loss. However, immunogenic response and long-term toxicity with the use of viral vectors remain a concern. Non-viral vectors are relatively non-immunogenic, scalable platforms that have had limited success with DNA delivery to the eye. Messenger RNA (mRNA) therapeutics has expanded the ability to achieve high gene expression while eliminating unintended genomic integration or the need to cross the restrictive nuclear barrier. Lipid-based nanoparticles (LNPs) remain at the forefront of potent delivery vectors for nucleic acids. Herein, we tested eleven different LNP variants for their ability to deliver mRNA to the back of the eye. LNPs that contained ionizable lipids with low pKa and unsaturated hydrocarbon chains showed the highest amount of reporter gene transfection in the retina. The kinetics of gene expression showed a rapid onset (within 4 h) that persisted for 96 h. The gene delivery was cell-type specific with majority of the expression in the retinal pigmented epithelium (RPE) and limited expression in the Müller glia. LNP-delivered mRNA can be used to treat monogenic retinal degenerative disorders of the RPE. The transient nature of mRNA-based therapeutics makes it desirable for applications that are directed towards retinal reprogramming or genome editing. Overall, non-viral delivery of RNA therapeutics to diverse cell types within the retina can provide transformative new approaches to prevent blindness.


Subject(s)
Eye/metabolism , Gene Transfer Techniques , Nanoparticles/administration & dosage , RNA, Messenger/administration & dosage , Animals , Female , Lipids/administration & dosage , Male , Mice, Inbred BALB C
3.
Invest Ophthalmol Vis Sci ; 60(4): 1275-1285, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30924852

ABSTRACT

Purpose: We determine if monomethyl fumarate (MMF) can protect the retina in mice subjected to light-induced retinopathy (LIR). Methods: Albino BALB/c mice were intraperitoneally injected with 50 to 100 mg/kg MMF before or after exposure to bright white light (10,000 lux) for 1 hour. Seven days after light exposure, retinal structure and function were evaluated by optical coherence tomography (OCT) and electroretinography (ERG), respectively. Retinal histology also was performed to evaluate photoreceptor loss. Expression levels of Hcar2 and markers of microglia activation were measured by quantitative PCR (qPCR) in the neural retina with and without microglia depletion. At 24 hours after light exposure, retinal sections and whole mount retinas were stained with Iba1 to evaluate microglia status. The effect of MMF on the nuclear factor kB subunit 1 (NF-kB) and Nrf2 pathways was measured by qPCR and Western blot. Results: MMF administered before light exposure mediated dose-dependent neuroprotection in a mouse model of LIR. A single dose of 100 mg/kg MMF fully protected retinal structure and function without side effects. Expression of the Hcar2 receptor and the microglia marker Cd14 were upregulated by LIR, but suppressed by MMF. Depleting microglia reduced Hcar2 expression and its upregulation by LIR. Microglial activation, upregulation of proinflammatory genes (Nlrp3, Caspase1, Il-1ß, Tnf-α), and upregulation of antioxidative stress genes (Hmox1) associated with LIR were mitigated by MMF treatment. Conclusions: MMF can completely protect the retina from LIR in BALB/c mice. Expression of Hcar2, the receptor of MMF, is microglia-dependent in the neural retina. MMF-mediated neuroprotection was associated with attenuation of microglia activation, inflammation and oxidative stress in the retina.


Subject(s)
Dermatologic Agents/therapeutic use , Fumarates/therapeutic use , Light/adverse effects , Maleates/therapeutic use , Radiation Injuries, Experimental/prevention & control , Retina/radiation effects , Retinal Degeneration/prevention & control , Animals , Blotting, Western , Electroretinography , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred BALB C , NF-E2-Related Factor 2/genetics , NF-kappa B/genetics , Radiation Injuries, Experimental/diagnostic imaging , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/physiopathology , Radiation-Protective Agents/therapeutic use , Real-Time Polymerase Chain Reaction , Receptors, G-Protein-Coupled/genetics , Retina/diagnostic imaging , Retina/physiopathology , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/etiology , Retinal Degeneration/physiopathology , Tomography, Optical Coherence
4.
Invest Ophthalmol Vis Sci ; 59(1): 462-471, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29368005

ABSTRACT

Purpose: To characterize the mediators of 5-HT2A serotonin receptor-driven retinal neuroprotection. Methods: Albino mice were treated intraperitoneally with saline or sarpogrelate, a 5-HT2A antagonist, immediately before light exposure (LE). Following LE, retinas were harvested for a high-throughput phosphorylation microarray to quantify activated phosphorylated proteins in G protein-coupled receptor (GPCR) signaling. To confirm microarray results and define temporal changes, Western blots of select GPCR signaling proteins were performed. Since both methodologies implicated MAPK/ERK activation, the functional significance of sarpogrelate-mediated ERK1/2 activation was examined by inhibition of ERK1/2 phosphorylation via pretreatment with the MEK inhibitor (MEKi) PD0325901. The degree of neuroprotection was evaluated with spectral-domain optical coherence tomography (SD-OCT) and electroretinography (ERG). To determine the effects of sarpogrelate on gene expression, a qPCR array measuring the expression of 84 genes involved in oxidative stress and cell death was performed 48 hours post LE. Results: Sarpogrelate led to an activation of the MAPK/ERK pathway. Temporal analysis further demonstrated a transient activation of ERK1/2, starting with an early inhibition 20 minutes into LE, a maximum activation at 3 hours post LE, and a return to baseline at 7 hours post LE. Inhibition of ERK1/2 with MEKi pretreatment led to attenuation of sarpogrelate-mediated neuroprotection. LE caused significant changes in the expression of genes involved in iron metabolism, oxidative stress, and apoptosis. These changes were prevented by sarpogrelate treatment. Conclusions: Sarpogrelate-mediated retinal protection involves a transient activation of the MAPK/ERK pathway, although this pathway alone does not account for the full effect of neuroprotection.


Subject(s)
MAP Kinase Signaling System/physiology , Neuroprotection/drug effects , Radiation Injuries, Experimental/prevention & control , Retina/radiation effects , Retinal Degeneration/prevention & control , Serotonin Antagonists/pharmacology , Succinates/pharmacology , Acrylonitrile/analogs & derivatives , Acrylonitrile/pharmacology , Aniline Compounds/pharmacology , Animals , Benzamides/pharmacology , Blotting, Western , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Electroretinography , Gene Expression Regulation/physiology , Injections, Intraperitoneal , Light , Male , Mice , Mice, Inbred BALB C , Neuroprotection/physiology , Oxidative Stress , Phosphorylation , Radiation Injuries, Experimental/genetics , Radiation Injuries, Experimental/metabolism , Real-Time Polymerase Chain Reaction , Receptor, Serotonin, 5-HT2A/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...