Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(5): 1914-31, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24195700

ABSTRACT

In the past few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAAs). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. In continuation of our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic headgroups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109), which was selected for advancement to clinical development.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Quinolines/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Dogs , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/enzymology , Humans , Models, Molecular , Quinolines/chemistry , Quinolines/pharmacokinetics , Rats , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
2.
Drug Metab Dispos ; 37(4): 787-93, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19116265

ABSTRACT

The objective of the present study was to examine the accuracy of using unbound brain concentration determined by a brain homogenate method (C(ub)), cerebral spinal fluid concentration (C(CSF)), and unbound plasma concentration (C(up)) as a surrogate for brain interstitial fluid concentration determined by brain microdialysis (C(m)). Nine compounds-carbamazepine, citalopram, ganciclovir, metoclopramide, N-desmethylclozapine, quinidine, risperidone, 9-hydroxyrisperidone, and thiopental-were selected, and each was administered as an intravenous bolus (up to 5 mg/kg) followed by a constant intravenous infusion (1-9 mg/kg/h) for 6 h in rats. For eight of the nine compounds, the C(ub)s were within 3-fold of their C(m); thiopental had a C(m) 4-fold of its C(ub). The C(CSF)s of eight of the nine compounds were within 3-fold of their corresponding C(m); 9-hydroxyrisperidone showed a C(CSF) 5-fold of its C(m). The C(up)s of five of the nine compounds were within 3-fold of their C(m); four compounds (ganciclovir, metoclopramide, quinidine, and 9-hydroxyrisperidone) had C(up)s 6- to 14-fold of their C(m). In conclusion, the C(ub) and C(CSF) were within 3-fold of the C(m) for the majority of the compounds tested. The C(up)s were within 3-fold of C(m) for lipophilic non-P-glycoprotein (-P-gp) substrates and greater than 3-fold of C(m) for hydrophilic or P-gp substrates. The present study indicates that the brain homogenate and cerebral spinal fluid methods may be used as surrogate methods to predict brain interstitial fluid concentrations within 3-fold of error in drug discovery and development settings.


Subject(s)
Brain/metabolism , Extracellular Fluid/metabolism , Pharmaceutical Preparations/metabolism , Animals , Chromatography, High Pressure Liquid , Male , Microdialysis , Pharmaceutical Preparations/cerebrospinal fluid , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...