Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 18685, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907720

ABSTRACT

The Developmental Origins of Health and Disease (DOHaD) concept has provided the framework to assess how early life experiences can shape health and disease throughout the life course. While maternal malnutrition has been proposed as a risk factor for the developmental programming of prostate cancer (PCa), the molecular mechanisms remain poorly understood. Using RNA-seq data, we demonstrated deregulation of miR-206-Plasminogen (PLG) network in the ventral prostate (VP) of young maternally malnourished offspring. RT-qPCR confirmed the deregulation of the miR-206-PLG network in the VP of young and old offspring rats. Considering the key role of estrogenic signaling pathways in prostate carcinogenesis, in vitro miRNA mimic studies also revealed a negative correlation between miR-206 and estrogen receptor α (ESR1) expression in PNT2 cells. Together, we demonstrate that early life estrogenization associated with the deregulation of miR-206 networks can contribute to the developmental origins of PCa in maternally malnourished offspring. Understanding the molecular mechanisms by which early life malnutrition affects offspring health can encourage the adoption of a governmental policy for the prevention of non-communicable chronic diseases related to the DOHaD concept.


Subject(s)
Malnutrition , MicroRNAs , Prostatic Neoplasms , Animals , Male , Rats , Malnutrition/complications , Malnutrition/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Origin of Life , Prostate/metabolism , Prostatic Neoplasms/genetics
2.
Environ Toxicol ; 37(10): 2566-2578, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35861251

ABSTRACT

Phthalates represent a group of substances used in industry that have antiandrogenic activity and are found in different concentrations in human urine and plasma. More than 8 million tons of phthalates are used each year, predominantly as plasticizers in polyvinyl chloride (PVC) products. Phthalates are widely used in everyday consumer products and improperly discarded into the environment. Furthermore, in vivo studies carried out in our laboratory showed that a mixture of phthalates, equivalent to the mixture used in this study, deregulated the expression of genes and miRNAs associated with prostatic carcinogenic pathways. Thus, this study was designed to establish an in vitro model to assess pathways related to cell survival, proliferation, apoptosis, and biosynthesis of miRNAs, using both normal and tumoral prostatic epithelial cells exposed to an environmentally relevant mixture of phthalate metabolites. Tumor (LNCaP) and normal (PNT-2) prostatic epithelial cell lines were exposed for 24 and 72 h to vehicle control or the phthalate mixture. The selected metabolite mixture (1000 µmol/L) consisted of 36.7% monoethyl phthalate (MEP), 19.4% mono(2-ethylhexyl) phthalate (MEHP), 15.3% monobutyl phthalate (MBP), 10.2% monoisobutyl phthalate (MiBP), 10.2% monoisononyl phthalate (MiNP), and 8.2% monobenzyl phthalate (MBzP). Gene expression was performed by qRT-PCR and cell migratory potential was measured using cell migration assays. Our results showed that the mixture of phthalates increased cell turnover, oxidative stress, biosynthesis, and expression of miRNAs in LNCaP cells; thus, increasing their cellular expansive and migratory potential and modulating tumor behavior, making them possibly more aggressive. However, these effects were less pronounced in benign cells, demonstrating that, in the short term, benign cells are able to develop effective mechanisms or more resistance against the insult.


Subject(s)
Environmental Pollutants , MicroRNAs , Neoplasms , Phthalic Acids , Environmental Exposure/analysis , Environmental Pollutants/analysis , Humans , Male , MicroRNAs/genetics , Phthalic Acids/toxicity , Plasticizers/metabolism , Plasticizers/toxicity , Prostate/metabolism
3.
Toxicol Sci ; 189(1): 91-106, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35762964

ABSTRACT

Phthalates are endocrine-disrupting chemicals used in many consumer products. Our laboratory previously developed an environmentally relevant phthalate mixture consisting of 6 phthalates and found that it disrupted female fertility in mice. However, it was unknown if maternal exposure to the mixture affects reproductive parameters and ovarian post-transcription in the F1 and F2 generation of female rats. Thus, we tested the hypothesis that maternal exposure to the phthalate mixture affects folliculogenesis, steroidogenesis, and ovarian microRNA (miRNA) in the F1 and F2 generations of female rats. Pregnant female rats were divided into 4 groups and orally dosed daily from gestational day 10 to postnatal day 21 with corn oil (control group), 20 µg/kg/day, 200 µg/kg/day, or 200 mg/kg/day of the phthalate mixture. Maternal exposure to the phthalate mixture impaired folliculogenesis in the F1 and F2 generations of female rats and affected steroidogenesis in the F1 generation of female rats compared to control. Further, the phthalate mixture altered ovarian expression of some genes related to the cell cycle and steroidogenesis compared to control in the F1 and F2 generations of female rats. The mixture also increased ovarian expression of rno-mir-184 that is involved with the oocyte maturation process. Collectively, our data show that maternal exposure to the phthalate mixture affects folliculogenesis and steroidogenesis in the F1 and F2 generations of female rats and alters ovarian miRNA expression in the F1 generation of female rats.


Subject(s)
Endocrine Disruptors , MicroRNAs , Phthalic Acids , Prenatal Exposure Delayed Effects , Animals , Endocrine Disruptors/toxicity , Female , Humans , Mice , MicroRNAs/genetics , MicroRNAs/pharmacology , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Rats , Reproduction
4.
Acta Histochem ; 124(1): 151843, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35021147

ABSTRACT

Aluminium (Al) is an important metal, but it can be toxic including for prostate tissue. This study aimed to evaluate whether exposure to aluminium chloride (AlCl3) during the peripubertal period affects ventral prostate development in rats. Male Wistar rats (30 days old) were distributed into three experimental groups: control (sterile 0.9% saline solution), AL7 (7 mg AlCl3/kg) and AL34 (34 mg AlCl3/kg). Animals were treated intraperitoneally from postnatal day (PND) 36-66 (peripubertal period). At PND67, the animals were anaesthetized and euthanized. Blood was collected for testosterone levels. The ventral prostate (VP) was removed, weighed and processed for histochemistry and immunohistochemistry to detect androgen (AR) and Ki67. Stereological and histopathological analyses, mast cell counts, and determinations of myeloperoxidase (MPO) and N-acetyl glycosidase (NAG) activity and IL-6 levels were performed. The AL34 group presented a reduction in body weight and increase in MPO activity compared to the other groups. In both the AL7 and AL34 groups, there was reorganization of the prostatic tissue compartments. There was no significant difference in prostate weight, number of granulated or degranulated mast cells, or testosterone levels. In conclusion, the exposure to aluminium chloride during the peripubertal period impairs the prostatic development.


Subject(s)
Androgens , Prostate , Aluminum Chloride , Animals , Immunohistochemistry , Male , Prostate/pathology , Rats , Rats, Wistar
5.
Food Chem Toxicol ; 156: 112519, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34428494

ABSTRACT

Phthalates metabolites have been detected in the urine of pregnant and breastfeeding women. Thus, this study evaluated the adverse effects of maternal exposure to a mixture of six phthalates (Pth mix) on the mammary gland development and carcinogenesis in F1 female offspring. Pregnant female Sprague-Dawley rats were exposed daily to vehicle or Pth mix (35.22% diethyl-phthalate, 21.03% di-(2-ethylhexyl)-phthalate, 14.91% dibutyl-phthalate, 15.10% diisononyl-phthalate, 8.61% diisobutyl-phthalate, and 5.13% benzylbutyl-phthalate) by gavage at 20 µg/kg, 200 µg/kg or 200 mg/kg during gestational day 10 (GD 10) to postnatal day 21 (PND 21). After weaning (PND 22), some female offspring were euthanized for mammary gland analyses while other females received a single dose of N-methyl-N-nitrosourea (MNU, 50 mg/kg) or vehicle and then tumor incidence and multiplicity were recorded until PND 180. Maternal Pth mix exposure increased the number of Ki-67 and progesterone receptor-positive epithelial cells in the mammary gland from Pth mix 200 at µg/kg and 200 mg/kg groups. In addition, tumor incidence and mean number were higher only in Pth mix at 200 mg/kg when compared to the vehicle-treated group, and percentage of tumor-free animals was lower in Pth mix at 200 µg/kg and 200 mg/kg groups. The findings indicate that perinatal Pth mixture exposure increased susceptibility to MNU-induced mammary carcinogenesis in adult F1 female offspring.


Subject(s)
Carcinogenesis/chemically induced , Environmental Pollutants/toxicity , Mammary Neoplasms, Animal/chemically induced , Phthalic Acids/toxicity , Prenatal Exposure Delayed Effects , Animal Feed , Animals , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Environmental Pollutants/classification , Female , Gene Expression Regulation/drug effects , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Methylnitrosourea/toxicity , Phthalic Acids/administration & dosage , Phthalic Acids/classification , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism
6.
Mol Cell Endocrinol ; 523: 111148, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33387600

ABSTRACT

The concept of Developmental Origins of Health and Disease (DOHaD) states that exposure to malnutrition early in life increase the incidence of non-communicable chronic diseases throughout the lifespan. In this study, a reduction in serum testosterone and an increase in estrogen levels were shown in older rats born to protein malnourished dams (6% protein in the diet) during gestation and lactation. Intraprostatic levels of reduced glutathione were decreased, while tissue expression of glutathione S-transferase pi and sulfiredoxin-1 were increased in these animals. Strong immunostaining for alfametilacil CoA racemase (AMACR), vascular endothelial growth factor-A (VEGF-A), and aquaporin-1 (AQP1) was also observed. In silico analysis confirmed commonly deregulated proteins in the ventral prostate of old rats and patients with prostate cancer. In conclusion, the increase in oxidative stress associated with an imbalance of sex hormones may contribute to prostate carcinogenesis in offspring, highlighting early-life malnutrition as a key risk factor for this malignance.


Subject(s)
Aging/pathology , Biomarkers, Tumor/metabolism , Malnutrition/complications , Maternal Nutritional Physiological Phenomena , Oxidative Stress , Prostate/metabolism , Prostate/pathology , Animals , Animals, Newborn , Female , Gene Expression Regulation, Neoplastic , Hormones/metabolism , Humans , Lactation , Male , Pregnancy , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Rats, Sprague-Dawley
7.
Reprod Toxicol ; 89: 136-144, 2019 10.
Article in English | MEDLINE | ID: mdl-31310804

ABSTRACT

Arsenic is a widely dispersed chemical compound in the environment and has been associated with the development of some diseases and different types of cancer. Little is known about the action of arsenic compounds on prostate development during prepuberty and puberty. This study evaluated prostate morphophysiology after sodium arsenite exposure during prepubertal period in rats. Male Wistar rats at PND23 were randomly distributed into three experimental groups (n = 10/group). The Ctrl group (filtered drinking water); As1 group (0.01 mg/L of NaAsO2); As2 group (10.0 mg/L of NaAsO2) that received the diluted solution in drinking water from PND23 to PND53. Histological and molecular analyzes showed developmental delay in the As1 group and important morphophysiological alterations in As2 group. The results showed that exposure to NaAsO2 during prepuberty compromised structural and functional maturation of the prostate in pubertal rats at both doses evaluated in this study.


Subject(s)
Aging/drug effects , Arsenites/toxicity , Environmental Pollutants/toxicity , Prostate/drug effects , Sexual Maturation/drug effects , Sodium Compounds/toxicity , Animals , Antioxidants/metabolism , Collagen/metabolism , Lipid Peroxidation/drug effects , Male , Prostate/growth & development , Prostate/metabolism , Prostate/pathology , Rats , Rats, Wistar , Testosterone/blood
8.
Toxicol Sci ; 171(1): 84-97, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31199487

ABSTRACT

Environmental exposure to phthalates during intrauterine development might increase susceptibility to neoplasms in reproductive organs such as the prostate. Although studies have suggested an increase in prostatic lesions in adult animals submitted to perinatal exposure to phthalates, the molecular pathways underlying these alterations remain unclear. Genome-wide levels of mRNAs and miRNAs were monitored with RNA-seq to determine if perinatal exposure to a phthalate mixture in pregnant rats is capable of modifying gene expression during prostate development of the filial generation. The mixture contains diethyl-phthalate, di-(2-ethylhexyl)-phthalate, dibutyl-phthalate, di-isononyl-phthalate, di-isobutyl-phthalate, and benzylbutyl-phthalate. Pregnant females were divided into 4 groups and orally dosed daily from GD10 to PND21 with corn oil (Control: C) or the phthalate mixture at 3 doses (20 µg/kg/day: T1; 200 µg/kg/day: T2; 200 mg/kg/day: T3). The phthalate mixture decreased anogenital distance, prostate weight, and decreased testosterone level at the lowest exposure dose at PND22. The mixture also increased inflammatory foci and focal hyperplasia incidence at PND120. miR-184 was upregulated in all treated groups in relation to control and miR-141-3p was only upregulated at the lowest dose. In addition, 120 genes were deregulated at the lowest dose with several of these genes related to developmental, differentiation, and oncogenesis. The data indicate that phthalate exposure at lower doses can cause greater gene expression modulation as well as other downstream phenotypes than exposure at higher doses. A significant fraction of the downregulated genes were predicted to be targets of miR-141-3p and miR-184, both of which were induced at the lower exposure doses.

9.
Reprod Toxicol ; 85: 59-64, 2019 04.
Article in English | MEDLINE | ID: mdl-30738174

ABSTRACT

We investigated whether mitochondrial-related genes and proteins are modulated by hyperglycemia promoted by gestational diabetes (GDM), thereby increasing neonate obesity predisposition. 19 healthy pregnant women, 16 pregnant women with GDM and their respective neonates were enrolled. Additionally, 19 obese and 19 eutrophic adults were recruited as a reference population. Umbilical cord, peripheral blood and placental (villous and decidua) tissues were collected to evaluate SOD2, PPAR-α and PPARGC-1ß and their respective protein expressions. Data from the reference population confirmed that the three genes and proteins were overexpressed in blood cells of obese compared to eutrophic subjects. Only SOD2 was found upregulated in placental villous (fetal side) tissue of GDM women. Therefore, our findings showed an interaction between the hyperglycemic environment and SOD2 modulation, but also indicated that none of the three genes is useful as potential biomarkers for obesity development.


Subject(s)
Carrier Proteins/genetics , Diabetes, Gestational/genetics , Hyperglycemia/genetics , Obesity/genetics , PPAR alpha/genetics , Superoxide Dismutase/genetics , Adult , Carrier Proteins/metabolism , Diabetes, Gestational/metabolism , Female , Fetal Blood/chemistry , Humans , Hyperglycemia/metabolism , Infant, Newborn , Male , Mitochondria/genetics , Obesity/metabolism , PPAR alpha/metabolism , Placenta/metabolism , Pregnancy , RNA-Binding Proteins , Superoxide Dismutase/metabolism , Young Adult
10.
J Gerontol A Biol Sci Med Sci ; 74(6): 751-759, 2019 05 16.
Article in English | MEDLINE | ID: mdl-29762647

ABSTRACT

Carcinogenesis is frequently linked to genetic background, however, exposure to environmental risk factors has gained attention as the etiologic agent for several types of cancer, including prostate. The intrauterine microenvironment has been described as a preponderant factor for offspring health; and maternal exposure to insult has been linked to chronic disease in older offspring. Using a model of maternal exposure to low-protein diet (LPD; 6% protein), we demonstrated that impairment of offspring rat prostatic growth on postnatal day (PND) 21 was associated with prostate carcinogenesis in older offspring (PND 540). One explanation is that maternal LPD consumption exposed offspring to an estrogenic intrauterine microenvironment, which potentially sensitized prostate cells early during glandular morphogenesis, increasing cellular response to estrogen in older rats. The onset of accelerated prostatic growth, observed on PND 21, associated with an unbalanced estrogen/testosterone ratio and increased circulating IGF-1 in older offspring appears to contribute to the development of prostate carcinoma in groups on gestational low protein and gestational and lactational low protein diets (33 and 50%, respectively). Our study strongly indicated maternal exposure to LPD as a potential risk factor for induction of slow-growing prostate carcinogenesis in rat offspring later in life.


Subject(s)
Carcinogenesis , Diet, Protein-Restricted , Prostate/growth & development , Prostatic Neoplasms/pathology , Age Factors , Animals , Animals, Newborn , Biomarkers/metabolism , Female , Hormones/metabolism , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley
11.
Reprod Toxicol ; 81: 147-154, 2018 10.
Article in English | MEDLINE | ID: mdl-30086341

ABSTRACT

Throughout the last decades, increasing exposure to environmental Endocrine Disruptors Chemicals (EDCs) has been associated with the occurrence of male reproductive disorders, such as impairment of prostate development and function, increase of susceptibility to oncogenesis, Epithelial-Mesenchymal Transition and the metastatic invasive potential. Nevertheless, few studies address the mechanisms involved in these alterations, especially those related to cell junctions, which are hormonally regulated and, therefore, possible EDCs targets. The cellular mechanisms discussed in this review are addressed to EDCs actions on tight, gap and adherent junctions and its related genes and proteins, such as claudin-1, -3, -4 and -8, connexin-32 and -43, E-cadherin and ß-catenin, respectively. The impairment of cell junction function, mainly due EDCs exposure during the prostate's critical window of development, can corroborate to acquire a mesenchymal phenotype by epithelial cells and the prostate microenvironment becomes susceptible to development of lesions in the latter stages of life.


Subject(s)
Endocrine Disruptors/toxicity , Intercellular Junctions/drug effects , Prostate/drug effects , Animals , Epithelial-Mesenchymal Transition/drug effects , Humans , Male , Prostate/growth & development , Prostatitis/chemically induced , Xenobiotics/toxicity
12.
Toxicology ; 409: 112-118, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30096437

ABSTRACT

Male fertility and spermatogenesis are directly linked to the Sertoli cell's ability to produce factors associated with germ cell development. Sertoli cells express receptors for FSH and testosterone, and are the major regulators of spermatogenesis. Recent studies report that regulatory RNA molecules, such as microRNAs (miRNAs), are able to modulate testicular function during spermatogenesis and that their altered expression may be involved in male infertility. miRNAs may play a role in the response to xenobiotics that have an adverse consequences to health. An important group of xenobiotic organic compounds with toxic potential are dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Experimental models of TCDD exposure in mice demonstrated that TCDD exposure causes low sperm count and delayed puberty. This study below examines the mechanism of TCDD's action in human Sertoli cells, through interrogating the expression profile of miRNAs and mRNAs, that enabled us to identify dysregulated molecular pathawys in Sertoli cell. 78 miRNAs presented altered expression, with positive regulation of 73 and negative regulation of 5 miRNAs when compared to the control group. Regarding gene expression profile, 51 genes were deregulated, of which 46 had positive regulation and 5 genes with negative regulation. Important pathways have been altered by the action of TCDD as AhR pathway, GPR68, FGF2 and LIF. This study has opened the door to new perspectives on the TCDD toxicity pathway as it affects Sertoli cells physiology that can ultimately lead to male infertility.


Subject(s)
Gene Expression Regulation/drug effects , MicroRNAs/metabolism , Polychlorinated Dibenzodioxins/toxicity , Sertoli Cells/drug effects , Transcriptome/drug effects , Cells, Cultured , Humans , Male , RNA, Messenger/metabolism , Sertoli Cells/metabolism
13.
Cell Biol Int ; 42(9): 1200-1211, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29771451

ABSTRACT

Testosterone is often recommended in the treatment of several aging-related conditions. However, there are still questions about the consequences of this therapy in terms of hormonal and inflammatory parameters that are crucial for prostate homeostasis. Thus, we investigate if the testosterone therapy (TT) modulates the hormone receptors and inflammatory cytokines in the ventral prostate of adult rats. Wistar rats aging 150 days were divided into two experimental groups (n = 10/group): T: received subcutaneous injections of testosterone cypionate (5 mg/kg body weight) diluted in corn oil every other day for 4 weeks; and C: received corn oil as vehicle. Animals were euthanized at 180 days old by decapitation. Blood was collected to obtain hormone and cytokines concentrations. The ventral prostate was dissected and processed for light microscope and molecular analyses. Relative ventral prostate weight and epithelial compartment were increased after TT. The number of intact and degranulated mast cells was reduced in the T group. Plasma testosterone, DHT and intraprostatic testosterone concentrations were higher in the T group. TT leads to an increase in cell proliferation and up-regulation of AR, ERß, PAR-4, and NRF2. Importantly, plasma concentration and tissue expression of IL-10 and TNF-α were higher after TT. In summary, these results indicate that TT can regulate inflammatory response, with impacts in cytokines and mast cell population, and modulates steroids receptors, important parameters for prostatic homeostasis.


Subject(s)
Prostate/drug effects , Testosterone/analogs & derivatives , Animals , Apoptosis Regulatory Proteins/analysis , Apoptosis Regulatory Proteins/blood , Cell Proliferation/drug effects , Cytokines/analysis , Cytokines/blood , Estrogen Receptor beta/analysis , Estrogen Receptor beta/blood , Inflammation/metabolism , Male , NF-E2-Related Factor 2/analysis , NF-E2-Related Factor 2/blood , Prostate/metabolism , Rats , Rats, Wistar , Receptors, Androgen/metabolism , Testosterone/metabolism , Testosterone/pharmacology
14.
Reprod Fertil Dev ; 30(3): 442-450, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28784202

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is considered one of the most toxic dioxins. The effects of TCDD are exerted via binding to the aryl hydrocarbon receptor (AhR). The aim of the present study was to evaluate the possible protective effects of resveratrol, an AhR antagonist, against testicular damage caused by TCDD exposure during pregnancy. Pregnant female Sprague-Dawley rats were divided into four groups: a control group; a group treated with 1µgkg-1, p.o., TCDD on Gestational Day (GD) 15; a group treated with 20µgkg-1, p.o., resveratrol on GD10-21; and a group treated with both TCDD and resveratrol. Rats were weighed and killed, and neonatal testes were collected for histopathological analysis on Postnatal Day (PND) 1. At PND90, adult male rats were killed and the testes collected for histopathological analysis and determination of sperm count. Resveratrol had a protective effect against the effects of TCDD on Sertoli cell number in adult and neonate testes, as well as against the effects of TCDD on abnormal seminiferous tubules in adults. Combined administration of TCDD and resveratrol altered the kinetics of spermatogenesis and the proportion of neonatal testicular compartments compared with the control group In addition, combined TCDD and resveratrol treatment decreased seminiferous tubule diameter in adult male rats compared with the control group. In conclusion, resveratrol may protect against some TCDD-induced testicular damage, but, based on the parameters assessed, the administration of resveratrol and TCDD in combination may result in more severe toxicity than administration of either drug alone.


Subject(s)
Environmental Pollutants/toxicity , Maternal Exposure/adverse effects , Polychlorinated Dibenzodioxins/toxicity , Prenatal Exposure Delayed Effects , Stilbenes/pharmacology , Testis/drug effects , Age Factors , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cytoprotection , Female , Male , Pregnancy , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Resveratrol , Risk Assessment , Semen Analysis , Seminiferous Tubules/drug effects , Seminiferous Tubules/metabolism , Seminiferous Tubules/pathology , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/pathology , Signal Transduction/drug effects , Spermatogenesis/drug effects , Stilbenes/toxicity , Testis/metabolism , Testis/pathology
15.
Horm Cancer ; 8(5-6): 286-297, 2017 12.
Article in English | MEDLINE | ID: mdl-28786001

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) presents adverse effects on breast development/carcinogenesis. This study aimed to identify the ability of resveratrol (Res) to modify the adverse effects of TCDD in a female offspring. Pregnant female Wistar rats were allocated into four groups: TCDD, TCDD + Res, Res, and control. TCDD (1 µg/kg) was orally administered as a single dose on gestational day (GD) 15, and Res was orally administered during GD10-21 and lactation at a dose of 20 mg/kg/day. Female offsprings were euthanized on a specific postnatal day (PND) for hormonal analysis (PND 22, 48-51), vaginal opening (PND 30-48), and mammary gland morphology (PND 22). Other females received two doses of N-nitroso-N-methylurea (MNU, 50 mg/kg) on PNDs 22 and 51 and were euthanized on PND 24 (Ki-67, ER-α and apoptosis indexes or molecular analysis) or PND 180 (tumor assay). TCDD exposure altered the development of the mammary structure while these alterations were partially improved by maternal Res. Two days after first MNU administration, some genes associated with apoptosis were altered in the mammary tissue from the TCDD group (Bax and Caspase 3 down- and Bcl-2 upregulated) but were also partially reestablished by maternal Res. Mammary gland bcl-2 and bcl-xl proteins expression was increased while the apoptosis index was reduced by TCDD exposure but restored by maternal Res. An increase in number of mammary tumors was observed in female offspring from the TCDD group compared to the other groups. The results indicate that most mammary changes induced in female offspring through TCDD exposure or after MNU administrations were reduced by maternal resveratrol treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/etiology , Maternal Exposure/adverse effects , Polychlorinated Dibenzodioxins/adverse effects , Prenatal Exposure Delayed Effects , Stilbenes/administration & dosage , Teratogens/toxicity , Animals , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Female , Hormones/blood , Hormones/metabolism , Male , Pregnancy , Rats , Resveratrol , Tumor Burden
16.
Prostate ; 77(9): 970-983, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28401578

ABSTRACT

BACKGROUND: Estrogens are critical players in prostate growth and disease. Estrogen therapy has been the standard treatment for advanced prostate cancer for several decades; however, it has currently been replaced by alternative anti-androgenic therapies. Additionally, studies of its action on prostate biology, resulting from an association between carcinogens and estrogen, at different stages of life are scarce or inconclusive about its protective and beneficial role on induced-carcinogenesis. Thus, the aim of this study was to determine whether estradiol exerts a protective and/or stimulatory role on N-methyl-N-nitrosurea-induced prostate neoplasms. METHODS: We adopted a rodent model that has been used to study induced-prostate carcinogenesis: the Mongolian gerbil. We investigated the occurrence of neoplasms, karyometric patterns, androgen and estrogen receptors, basal cells, and global methylation status in ventral and dorsolateral prostate tissues. RESULTS: Histopathological analysis showed that estrogen was able to slow tumor growth in both lobes after prolonged treatment. However, a true neoplastic regression was observed only in the dorsolateral prostate. In addition to the protective effects against neoplastic progression, estrogen treatment resulted in an epithelium that exhibited features distinctive from a normal prostate, including increased androgen-insensitive basal cells, high androgens and estrogen receptor positivity, and changes in DNA methylation patterns. CONCLUSIONS: Estrogen was able to slow tumor growth, but the epithelium exhibited features distinct from a normal prostatic epithelium, and this unstable microenvironment could trigger lesion recurrence over time.


Subject(s)
Androgens , Estradiol , Prostate , Prostatic Neoplasms , Androgens/metabolism , Androgens/pharmacology , Animals , Carcinogenesis/drug effects , Carcinogenesis/pathology , Carcinogens/pharmacology , DNA Damage/drug effects , Disease Progression , Epithelial Cells/pathology , Estradiol/metabolism , Estradiol/pharmacology , Male , Methylnitrosourea/pharmacology , Prostate/drug effects , Prostate/pathology , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/pathology , Prostatic Neoplasms/physiopathology , Prostatic Neoplasms/prevention & control , Protective Factors , Rats
17.
Cell Biol Int ; 41(11): 1203-1213, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28244627

ABSTRACT

Zinc is important for cell physiology and alteration of its levels during development can modulate a series of biological events. The aim of this study was to investigate whether dietary zinc deficiency or supplementation during morphogenesis and early postnatal development could interfere in prostate maturation. Pregnant rats were exposed to a standard diet (NZ:35 mg Zn/kg chow), low-zinc diet (LZ:3 mg of Zn/kg chow) and zinc-supplemented diet (HZ:180 mg/Kg chow) from gestational day 10 (GD10) through postnatal day 21 (PND21). After weaning, male offspring were divided into three groups that were submitted to the same food conditions as their mothers until PND53. The animals were euthanized at PND53 and PND115. The ventral prostate was removed, weighed and its fragments were subjected to histological, western blot and zymography analysis. PND53: body and prostate weight were lower in LZ compared to NZ; the epithelial compartment was reduced while the stromal compartment was increased in LZ compared to NZ; there was an increase in the amount of collagen and reduction in AR and SIRT1 expression in LZ compared to NZ. PND115: body weight was lower in LZ compared to NZ and prostate weight was similar among the groups; peripheral physiological hyperplasia was observed, as well as an increased epithelial proliferation index and reduced PAR4 expression in LZ and HZ compared to NZ. Zinc deficiency during prostate morphogenesis and differentiation is potentially harmful to its morphology, however, by restoring the standard dietary environment, the gland responds to the new microenvironment independent of the previous dietary condition.


Subject(s)
Prostate/drug effects , Zinc/administration & dosage , Animals , Diet , Dietary Supplements/analysis , Female , Male , Pregnancy , Prenatal Nutritional Physiological Phenomena , Rats , Rats, Sprague-Dawley , Zinc/metabolism
18.
Anat Rec (Hoboken) ; 300(2): 291-299, 2017 02.
Article in English | MEDLINE | ID: mdl-27788294

ABSTRACT

Gestational diabetes mellitus (GDM) has increased in recent years. Although the cellular and molecular mechanisms involved in GDM-increased risk factors to offspring remained poorly understood, some studies suggested an association between an increase in oxidative stress induced by maternal hyperglycemia and complications for both mothers and newborns. Here, we investigated the impact of maternal hyperglycemia followed by maternal insulin replacement during lactation on the expression of antioxidant enzymes and mast cell number in offspring ventral prostate (VP) at puberty. Pregnant rats were divided into three groups: control (CT); streptozotocin-induced maternal hyperglycemia (MH); and MH plus maternal insulin replacement during lactation (MHI). Male offspring were euthanized at postnatal day (PND) 60 and the VP was removed and processed for histology and Western blotting analyses. Maternal hyperglycemia delayed prostate maturation, and increased mast cell number catalase (CAT), superoxide dismutase (SOD), glutatione-s-transferase (GST-pi), and cyclooxygenase-2 (Cox-2) expression in the offspring of hyperglycemic dams. Maternal insulin replacement restored VP structure, mast cell number and antioxidant protein expression, except for Cox-2, which remained higher in the MHI group. Thus, an increase in oxidative stress induced by intrauterine hyperglycemia impacts prostate development and maturation, which persists until puberty. The overall improvement of maternal metabolism after insulin administration contributes to the restoration of prostate antioxidant enzymes and secretory function. Taken together, our results highlighted that imbalanced physiological maternal-fetal interaction contributes to the impairment of reproductive performance of the offspring from diabetic mothers. Anat Rec, 300:291-299, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes, Gestational/metabolism , Mast Cells/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prostate/metabolism , Animals , Blood Glucose/metabolism , Cell Count , Cyclooxygenase 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Diabetes, Gestational/drug therapy , Diabetes, Gestational/enzymology , Diabetes, Gestational/pathology , Female , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/pharmacology , Insulin/therapeutic use , Male , Mast Cells/drug effects , Mast Cells/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pregnancy , Prenatal Exposure Delayed Effects/enzymology , Prenatal Exposure Delayed Effects/pathology , Prostate/drug effects , Prostate/enzymology , Prostate/pathology , Rats , Rats, Wistar
19.
Int J Exp Pathol ; 97(4): 310-316, 2016 08.
Article in English | MEDLINE | ID: mdl-27469444

ABSTRACT

Developmental toxicity caused by environmental exposure to heavy metals during the perinatal period has raised questions about offspring health. Cadmium (Cd) is an endocrine-disrupting chemical with the potential to interfere with morphogenesis and susceptibility to diseases in reproductive organs. Taking into account that in the rat prostate morphogenesis occurs during the perinatal period, and that pregnant females absorb and retain more dietary Cd than their non-pregnant counterparts, it is important to understand the effects of perinatal Cd exposure on the adult rat prostate. Therefore this study investigated the effects of gestational and lactational Cd exposure on adult offspring rat prostate histopathology. Pregnant rats (n = 20) were divided into two groups: Control (treated with aqueous solution of sodium acetate 10 mg/l) and treated (treated with aqueous solution of cadmium acetate 10 mg/l) administered in the drinking water. After weaning, male offspring from different litters (n = 10) received food and water 'ad libitum'. The animals were euthanized at postnatal day 90 (PND90), the ventral prostates (VPs) were removed, weighed and examined histopathologically. Blood was collected for the measurement of testosterone (T) levels. Immunohistochemistry for androgen receptor (AR) and Ki67, and a TUNEL assay were performed. There were no differences in T levels, cell proliferation and apoptosis indexes, or AR immunostaining between the experimental groups. Stromal inflammatory foci and multifocal inflammation increased significantly in the treated group. These changes were associated with inflammatory reactive epithelial atypia and stromal fibrillar rearrangement. In conclusion, VP was permanently affected by perinatal Cd exposition, with increased incidence of inflammatory disorders with ageing.


Subject(s)
Acetates/toxicity , Cadmium/toxicity , Endocrine Disruptors/toxicity , Prenatal Exposure Delayed Effects , Prostate/drug effects , Animals , Female , Lactation , Male , Maternal-Fetal Exchange , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Prostate/embryology , Prostate/metabolism , Prostate/pathology , Rats, Wistar , Receptors, Androgen/metabolism , Testosterone/blood
20.
JBRA Assist Reprod ; 20(2): 82-8, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27244767

ABSTRACT

The aim of this study as to analyze published evidence regarding the effectiveness of aromatase inhibitor therapy on improving spermatogenesis in infertile men. We carried out a systematic review of randomized controlled trials. The date of the most recent search was October 4, 2015. Two authors independently selected relevant clinical trials, assessing their methodological quality and extracting data. Three studies were included in this review with a total of 100 participants; however, we were able to include data from only 54 participants in the analysis. In the representation of meta-analysis with a single study comparing testolactone versus placebo, related to the hormone concentrations, there was a statistically significance difference favoring the use of testolactone for Luteinizing Hormone (LH); Estrogen (E2); free Testosterone (free T); free Estrogen (free E2); 17-Hydroxyprogesterone (17OHP); prolactin (PRL). In another analysis from a single study comparing letrozole versus anastrozole, there was also a statistically significance difference favoring the use of letrozole for the increase in both the sperm count and LH. There is only low quality evidence regarding the effectiveness of aromatase inhibitor therapy in infertile men. Further trials are needed with standardized interventions and outcomes.


Subject(s)
Aromatase Inhibitors/therapeutic use , Azoospermia/drug therapy , Oligospermia/drug therapy , Humans , Male , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...