Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(12): e08436, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917788

ABSTRACT

While the development of dye-sensitized solar cells (DSSCs) has been ongoing for more than 30 years, the currently obtained efficiency is unsatisfactory. However, the study of DSSC development has produced a fundamental understanding of cell performance and inspired other devices, such as perovskite cell solar cells. DSSCs consist of a dye-sensitized photoanode, a counter electrode, and a redox couple in the electrolyte system. Each of the components has an important role and cofunctions with each other to obtain a high power conversion efficiency. Various modifications to each DSSC component have been applied to improve their performance. Additionally, to generate improvements, the effort to reduce production costs has been crucial. The utilization of natural sources for DSSC components is a possible solution to this issue. The utilization of natural resources also aims to increase the value of the natural resource itself. In this review, the applications of various natural sources for DSSC components are described, as well as the modification efforts that have been made to enhance their performance. The discussion covers the utilization of natural dye for sensitizer dyes in liquid DSSC applications: (1) utilization of biopolymers for quasi-solid DSSC electrolytes, (2) green synthesis methods for photoanode semiconductors, and (3) development of natural carbon counter electrodes. The detailed factors that influence improvements in cell performance are also addressed.

2.
J Hazard Mater ; 188(1-3): 172-80, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21316842

ABSTRACT

An organic-free sol-gel method was developed to synthesize crack-free, high surface roughness and visible-light-active C-N-codoped TiO(2) films. These films were subsequently evaluated for its photodegradation efficient using stearic acid as the model pollutant compound. The current approach avoids the use of hazardous organic solvents and employs carbon black as the carbon source as well as a template to increase the surface roughness. The presence of carbon and nitrogen species in TiO(2) was studied and discussed. The concentrations of carbon and nitrogen dopants in the TiO(2) films were affected by calcination temperature and the concentration of carbon black. Optimal visible light photocatalytic activity was observed for C-N-codoped TiO(2) film at 10.0 wt.% C, which was more than double that of the N-doped TiO(2) film. The enhancement in visible light photocatalytic activities of the C-N-codoped TiO(2) films was attributed to the synergistic effects of carbon and nitrogen dopants, and high surface roughness of the prepared films.


Subject(s)
Environmental Pollutants/chemistry , Environmental Restoration and Remediation/methods , Photolysis , Titanium/chemistry , Carbon , Catalysis , Nitrogen , Photochemistry , Stearic Acids
3.
Nanoscale ; 2(7): 1122-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20648337

ABSTRACT

A novel and environmental friendly method was developed to prepare transparent, uniform, crack-free and visible light activated nitrogen doped (N-doped) titania thin films without the use of organic Ti precursors and organic solvents. The N-doped titania films were prepared from heating aqueous peroxotitanate thin films deposited uniformly on superhydrophilic uncoated glass substrates. The pure glass substrates were superhydrophilic after being heated at 500 degrees C for 1 h. Nitrogen concentrations in the titania films were adjusted by changing the amount of ammonia solution. The optimal photocatalytic activity of the N-doped titania films was about 14 times higher than that of a commercial self-cleaning glass under the same visible light illumination. The current reported preparative technique is generally applicable for the preparation of other thin films.


Subject(s)
Light , Titanium/chemistry , Catalysis , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry , Nitrogen/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...