Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Imaging (Bellingham) ; 11(Suppl 1): S12803, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38799271

ABSTRACT

Purpose: We aim to compare the low-contrast detectability of a clinical whole-body photon-counting-detector (PCD)-CT at different scan modes and image types with an energy-integrating-detector (EID)-CT. Approach: We used a channelized Hotelling observer (CHO) previously optimized for quality control purposes. An American College of Radiology CT accreditation phantom was scanned on both PCD-CT and EID-CT with 10 phantom positionings. For PCD-CT, images were generated using two scan modes, standard resolution (SR) and ultra-high-resolution (UHR); two image types, virtual monochromatic images at 70 keV and low-energy threshold (T3D); both filtered-back-projection (FBP) and iterative reconstruction (IR) reconstruction methods; and three reconstruction kernels. For each positioning, three repeated scans were acquired for each scan mode, image type, and CTDIvol of 6, 12, and 24 mGy. For EID-CT, images acquired from scans (10 positionings × 3 repeats × 3 doses) were reconstructed using the closest counterpart FBP and IR kernels. CHO was applied to calculate the index of detectability (d') on both scanners. Results: With the smooth Br44 kernel, the d' of UHR was mostly comparable with that of the SR mode (difference: -11.4% to 8.3%, p=0.020 to 0.956), and the T3D images had a higher d' (difference: 0.7% to 25.6%) than 70 keV images on PCD-CT. Compared with the EID-CT, UHR-T3D of PCD-CT had non-inferior d' (difference: -2.7% to 12.9%) with IR and non-superior d' (difference: 0.8% to 11.2%) with FBP using the Br44 kernel. PCD-CT produced higher d' than EID-CT by 61.8% to 247.1% with the sharper reconstruction kernels. Conclusions: The comparison between PCD-CT and EID-CT was significantly influenced by the reconstruction method and kernel. With a smooth kernel that is typically used in low-contrast detection tasks, the PCD-CT demonstrated low-contrast detectability that was comparable to EID-CT with IR and showed no superiority when using FBP. With the use of sharper kernels, the PCD-CT significantly outperformed EID-CT in low-contrast detectability.

2.
Article in English | MEDLINE | ID: mdl-38606000

ABSTRACT

The Channelized Hotelling observer (CHO) is well correlated with human observer performance in many CT detection/classification tasks but has not been widely adopted in routine CT quality control and performance evaluation, mainly because of the lack of an easily available, efficient, and validated software tool. We developed a highly automated solution - CT image quality evaluation and Protocol Optimization (CTPro), a web-based software platform that includes CHO and other traditional image quality assessment tools such as modulation transfer function and noise power spectrum. This tool can allow easy access to the CHO for both the research and clinical community and enable efficient, accurate image quality evaluation without the need of installing additional software. Its application was demonstrated by comparing the low-contrast detectability on a clinical photon-counting-detector (PCD)-CT with a traditional energy-integrating-detector (EID)-CT, which showed UHR-T3D had 6.2% higher d' than EID-CT with IR (p = 0.047) and 4.1% lower d' without IR (p = 0.122).

SELECTION OF CITATIONS
SEARCH DETAIL
...