Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 153: 116108, 2021 12.
Article in English | MEDLINE | ID: mdl-34252605

ABSTRACT

BACKGROUND: Endurance exercise can cause a decrease in serum ionized calcium (iCa) and increases in parathyroid hormone (PTH) and bone resorption, reflected by serum carboxy-terminal collagen crosslinks (CTX). We developed a calcium clamp to prevent the decrease in iCa during exercise, which attenuated increases in PTH and CTX during vigorous cycling in young men. The goal was to determine whether this occurs in older adults during brisk walking. METHODS: Twelve older adults (6 men, 6 women) performed two identical 60-min treadmill walking bouts with Ca gluconate or half-normal saline infusion. Blood sampling for iCa, total calcium (tCa), phosphate (P), PTH, and CTX, occurred before, during, and for 4 h after exercise. RESULTS: iCa decreased during exercise with the saline infusion (p = 0.04) and this provoked increases in PTH and CTX (both p < 0.01). The Ca clamp prevented the decrease in serum iCa during exercise and attenuated the PTH and CTX responses. CONCLUSIONS: Preventing the exercise-induced decrease in iCa markedly attenuated the increases in PTH and CTX. The cause of the decrease in iCa during exercise remains unclear, but the increases in PTH and CTX are likely counter-regulatory responses to defend serum iCa. This contention is supported by previous observations that the disruption of Ca homeostasis during exercise occurs regardless of training status. It will be important to establish whether this acute catabolic effect of exercise diminishes the potential chronic anabolic effects of exercise on bone.


Subject(s)
Bone Resorption , Calcium , Aged , Bone Resorption/prevention & control , Collagen Type I , Female , Humans , Male , Parathyroid Hormone , Peptides , Walking
2.
Gerontol Geriatr Med ; 6: 2333721420980313, 2020.
Article in English | MEDLINE | ID: mdl-33403222

ABSTRACT

Exercise is critical for health maintenance in late life. The COVID-19 shelter in place and social distancing orders resulted in wide-scale interruptions of exercise therapies, placing older adults at risk for the consequences of decreased mobilization. The purpose of this paper is to describe rapid transition of the Gerofit facility-based group exercise program to telehealth delivery. This Gerofit-to-Home (GTH) program continued with group-based synchronous exercise classes that ranged from 1 to 24 Veterans per class and 1 to 9 classes offered per week in the different locations. Three hundred and eight of 1149 (27%) Veterans active in the Gerofit facility-based programs made the transition to the telehealth delivered classes. Participants' physical performance testing continued remotely as scheduled with comparisons between most recent facility-based and remote testing suggesting that participants retained physical function. Detailed protocols for remote physical performance testing and sample exercise routines are described. Translation to remote delivery of exercise programs for older adults could mitigate negative health effects.

3.
Med Sci Sports Exerc ; 51(8): 1599-1605, 2019 08.
Article in English | MEDLINE | ID: mdl-31083027

ABSTRACT

Endurance exercise can cause a decrease in serum ionized calcium (iCa) and increases in parathyroid hormone (PTH) and c-terminal telopeptide of type I collagen (CTX), which may be due to Ca loss in sweat. PURPOSE: This study aimed to determine whether exercise in a warm environment exaggerates the decrease in iCa and increases in PTH and CTX compared with a cool environment in older adults. METHODS: Twelve women and men 61-78 yr old performed two identical 60-min treadmill bouts at ~75% of maximal heart rate under warm and cool conditions. Serum iCa, PTH, and CTX were measured every 15 min starting 15 min before and continuing for 60 min after exercise. Sweat Ca loss was estimated from sweat volume and sweat Ca concentration. RESULTS: Sweat volume was low and variable; there were no differences in sweat volume or Ca concentration between conditions. iCa decreased after 15 min of exercise, and the change was similar in both conditions. Increases in PTH (warm: 16.4, 95% confidence interval [CI] = 6.2, 26.5 pg·mL; cool: 17.3, 95% CI = 8.1, 26.4 pg·mL) and CTX (warm: 0.08, 95% CI = 0.05, 0.11 ng·mL; cool: 0.08, 95% CI = 0.01, 0.16 ng·mL) from before to immediately after exercise were statistically significant and similar between conditions. Adjusting for plasma volume shifts did not change the results. CONCLUSION: The increases in PTH and CTX, despite the low sweat volume, suggest that dermal Ca loss is not a major factor in the decrease in iCa and increases in PTH and CTX observed during exercise in older adults.


Subject(s)
Bone and Bones/metabolism , Calcium/blood , Collagen Type I/blood , Hot Temperature , Parathyroid Hormone/blood , Peptides/blood , Walking/physiology , Aged , Biomarkers/blood , Bone Density , Cold Temperature , Collagen Type I/urine , Female , Homeostasis , Humans , Male , Middle Aged , Peptides/urine , Skin/metabolism , Sweat/metabolism , Sweating/physiology
4.
Med Sci Sports Exerc ; 51(10): 2117-2124, 2019 10.
Article in English | MEDLINE | ID: mdl-31009423

ABSTRACT

INTRODUCTION: Exercise can cause a decrease in serum ionized calcium (iCa) concentration, which stimulates parathyroid hormone (PTH) secretion and activates bone resorption. We postulated that dermal Ca loss during cycling exercise is the major determinant of the serum iCa, PTH, and bone resorption (C-terminal telopeptide of type 1 collagen [CTX]) responses. METHODS: To investigate this, women (n = 13) and men (n = 12) age 18 to 45 yr performed the same exercise bout under cool (18°C) and warm (26°C) conditions. Exercise was 60 min of cycling at ~75% of peak aerobic power. Sweat samples were obtained during exercise using a skin patch method, and blood samples were obtained before and during exercise and during 60 min of recovery. RESULTS: Sweat volume and estimated sweat Ca loss were 50% higher for the warm condition than the cool condition. Despite this, there were no differences between thermal conditions in the changes (mean, 95% confidence interval [95% CI]) in iCa (cool, -0.07 mg·dL; 95% CI, -0.16 to 0.03); warm, -0.07 mg·dL; 95% CI, -0.20 to 0.05), PTH (cool, 34.4 pg·mL; 95% CI, 23.6-45.2; warm: 35.8 pg·mL; 95% CI, 22.4-49.1), or CTX (cool, 0.11 ng·mL; 95% CI, 0.08-0.13; warm, 0.15 ng·mL; 95% CI, 0.11-0.18). Adjusting for exercise-related shifts in plasma volume revealed a marked decline in vascular iCa content in the first 15 min of exercise (cool, -0.85 mg·dL; 95% CI, -1.01 to -0.68; warm, -0.85 mg·dL; 95% CI, -1.05 to -0.66), before substantial sweat Ca loss had occurred. CONCLUSIONS: This indicates that dermal Ca loss was not the primary trigger for the increases in PTH and CTX during exercise. Further research is necessary to understand the causes and consequences of the disruption in Ca homeostasis during exercise and specifically the extravascular shift in iCa.


Subject(s)
Calcium/metabolism , Exercise/physiology , Parathyroid Hormone/blood , Skin/metabolism , Sweating/physiology , Acidosis/physiopathology , Adolescent , Adult , Bone Resorption/physiopathology , Calcium/blood , Collagen Type I/blood , Female , Heart Rate/physiology , Homeostasis , Humans , Male , Middle Aged , Peptides/blood , Young Adult
5.
J Bone Miner Res ; 33(7): 1326-1334, 2018 07.
Article in English | MEDLINE | ID: mdl-29572961

ABSTRACT

Exercise can cause a decrease in serum ionized calcium (iCa) and increases in parathyroid hormone (PTH) and bone resorption. We used a novel intravenous iCa clamp technique to determine whether preventing a decline in serum iCa during exercise prevents increases in PTH and carboxy-terminal collagen crosslinks (CTX). Eleven cycling-trained men (aged 18 to 45 years) underwent two identical 60-min cycling bouts with infusion of Ca gluconate or saline. Blood sampling for iCa, total calcium (tCa), PTH, CTX, and procollagen type 1 amino-terminal propeptide (P1NP) occurred before, during, and for 4 hours after exercise; results are presented as unadjusted and adjusted for plasma volume shifts (denoted with subscript ADJ). iCa decreased during exercise with saline infusion (p = 0.01 at 60 min) and this was prevented by Ca infusion (interaction, p < 0.007); there were abrupt decreases in Ca content (iCaADJ and tCaADJ ) in the first 15 min of exercise under both conditions. PTH and CTX were increased at the end of exercise (both p < 0.01) on the saline day, and markedly attenuated (-65% and -71%; both p < 0.001) by Ca. CTX remained elevated for 4 hours after exercise on the saline day (p < 0.001), despite the return of PTH to baseline by 1 hour after exercise. P1NP increased in response to exercise (p < 0.001), with no difference between conditions, but the increase in P1NPADJ was not significant. Results for PTHADJ and CTXADJ were similar to unadjusted results. These findings demonstrate that bone resorption is stimulated early in exercise to defend serum iCa. Vascular Ca content decreased early in exercise, but neither the reason why this occurred, nor the fate of Ca, are known. The results suggest that the exercise-induced increase in PTH had an acute catabolic effect on bone. Future research should determine whether the increase in PTH generates an anabolic response that occurs more than 4 hours after exercise. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Bone Resorption/blood , Bone Resorption/physiopathology , Calcium/blood , Exercise/physiology , Parathyroid Hormone/blood , Adolescent , Adult , Bone Resorption/urine , Calcium/urine , Collagen Type I/blood , Humans , Ions , Male , Middle Aged , Peptide Fragments/blood , Peptides/blood , Procollagen/blood
6.
J Neurol Phys Ther ; 41(2): 93-100, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28263256

ABSTRACT

BACKGROUND AND PURPOSE: Objective ambulatory activity during daily living has not been characterized for people with Parkinson disease prior to initiation of dopaminergic medication. Our goal was to characterize ambulatory activity based on average daily step count and examine determinants of step count in nonexercising people with de novo Parkinson disease. METHODS: We analyzed baseline data from a randomized controlled trial, which excluded people performing regular endurance exercise. Of 128 eligible participants (mean ± SD = 64.3 ± 8.6 years), 113 had complete accelerometer data, which were used to determine daily step count. Multiple linear regression was used to identify factors associated with average daily step count over 10 days. Candidate explanatory variable categories were (1) demographics/anthropometrics, (2) Parkinson disease characteristics, (3) motor symptom severity, (4) nonmotor and behavioral characteristics, (5) comorbidities, and (6) cardiorespiratory fitness. RESULTS: Average daily step count was 5362 ± 2890 steps per day. Five factors explained 24% of daily step count variability, with higher step count associated with higher cardiorespiratory fitness (10%), no fear/worry of falling (5%), lower motor severity examination score (4%), more recent time since Parkinson disease diagnosis (3%), and the presence of a cardiovascular condition (2%). DISCUSSION AND CONCLUSIONS: Daily step count in nonexercising people recruited for this intervention trial with de novo Parkinson disease approached sedentary lifestyle levels. Further study is warranted for elucidating factors explaining ambulatory activity, particularly cardiorespiratory fitness, and fear/worry of falling. Clinicians should consider the costs and benefits of exercise and activity behavior interventions immediately after diagnosis of Parkinson disease to attenuate the health consequences of low daily step count.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A170).


Subject(s)
Activities of Daily Living , Exercise/physiology , Parkinson Disease/physiopathology , Accelerometry , Accidental Falls , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...