Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Toxins (Basel) ; 15(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36977086

ABSTRACT

Bothrops atrox envenomations are common in the Brazilian Amazon. The venom of B. atrox is highly inflammatory, which results in severe local complications, including the formation of blisters. Moreover, there is little information on the immune mechanisms associated with this condition. Thus, a longitudinal study was carried out to characterize the profile of the cell populations and soluble immunological mediators in the peripheral blood and blisters in B. atrox patients s according to their clinical manifestations (mild and severe). A similar response in both B. atrox patient groups (MILD and SEV) was observed, with an increase in inflammatory monocytes, NKT, and T and B cells, as well as CCL2, CCL5, CXCL9, CXCL10, IL-1ß and IL-10, when compared with the group of healthy blood donors. After the administration of antivenom, the participation of patrolling monocytes and IL-10 in the MILD group was observed. In the SEV group, the participation of B cells was observed, with high levels of CCL2 and IL-6. In the blister exudate, a hyperinflammatory profile was observed. In conclusion, we revealed the involvement of cell populations and soluble mediators in the immune response to B. atrox envenomation at the local and peripheral level, which is related to the onset and extent of the inflammation/clinical manifestation.


Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Animals , Antivenins , Blister/complications , Crotalid Venoms/immunology , Interleukin-10 , Longitudinal Studies , Snake Bites/complications
2.
Front Immunol ; 11: 1874, 2020.
Article in English | MEDLINE | ID: mdl-32973773

ABSTRACT

Snakebites are considered a major public health problem worldwide. In the Amazon region of Brazil, the snake Bothrops atrox (B. atrox) is responsible for 90% of the bites. These bites may cause local and systemic signs from acute inflammatory reaction and hemostatic changes, and present common hemorrhagic disorders. These alterations occur due the action of hemostatically active and immunogenic toxins which are capable of triggering a wide range of hemostatic and inflammatory events. However, the crosstalk between coagulation disorders and inflammatory reaction still has gaps in snakebites. Thus, the goal of this study was to describe the relationship between the consumption of fibrinogen and the profile of inflammatory molecules (chemokines and cytokines) in evenomations by B. atrox snakebites. A prospective study was carried out with individuals who had suffered B. atrox snakebites and presented different levels of fibrinogen consumption (normal fibrinogen [NF] and hypofibrinogenemia [HF]). Seventeen patients with NF and 55 patients with HF were eligible for the study, in addition to 50 healthy controls (CG). The molecules CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A were quantified in plasma using the CBA technique at three different times (pre-antivenom therapy [T0], 24 h [T1], and 48 h [T2] after antivenom therapy). The profile of the circulating inflammatory response is different between the groups studied, with HF patients having higher concentrations of CCL-5 and lower IFN-γ. In addition, antivenom therapy seems to have a positive effect, leading to a profile of circulating inflammatory response similar in quantification of T1 and T2 on both groups. Furthermore, these results suggest that a number of interactions of CXCL-8, CXCL-9, CCL-2, IL-6, and IFN-γ in HF patients are directly affected by fibrinogen levels, which may be related to the inflammatory response and coagulation mutual relationship induced by B. atrox venom. The present study is the first report on inflammation-coagulation crosstalk involving snakebite patients and supports the better understanding of envenomation's pathophysiology mechanisms and guides in the search for novel biomarkers and prospective therapies.


Subject(s)
Crotalid Venoms , Fibrinogen/metabolism , Inflammation/immunology , Snake Bites/blood , Snake Bites/immunology , Adult , Animals , Antivenins/therapeutic use , Blood Coagulation/physiology , Bothrops , Brazil , Crotalid Venoms/adverse effects , Crotalid Venoms/immunology , Cytokines/immunology , Female , Hemostasis/physiology , Hemostatic Disorders/etiology , Humans , Male , Middle Aged , Snake Bites/drug therapy
3.
Front Immunol, v. 11, 1874, ago. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3199

ABSTRACT

Snakebites are considered a major public health problem worldwide. In the Amazon region of Brazil, the snake Bothrops atrox (B. atrox) is responsible for 90% of the bites. These bites may cause local and systemic signs from acute inflammatory reaction and hemostatic changes, and present common hemorrhagic disorders. These alterations occur due the action of hemostatically active and immunogenic toxins which are capable of triggering a wide range of hemostatic and inflammatory events. However, the crosstalk between coagulation disorders and inflammatory reaction still has gaps in snakebites. Thus, the goal of this study was to describe the relationship between the consumption of fibrinogen and the profile of inflammatory molecules (chemokines and cytokines) in evenomations by B. atrox snakebites. A prospective study was carried out with individuals who had suffered B. atrox snakebites and presented different levels of fibrinogen consumption (normal fibrinogen [NF] and hypofibrinogenemia [HF]). Seventeen patients with NF and 55 patients with HF were eligible for the study, in addition to 50 healthy controls (CG). The molecules CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A were quantified in plasma using the CBA technique at three different times (pre-antivenom therapy [T0], 24 h [T1], and 48 h [T2] after antivenom therapy). The profile of the circulating inflammatory response is different between the groups studied, with HF patients having higher concentrations of CCL-5 and lower IFN-γ. In addition, antivenom therapy seems to have a positive effect, leading to a profile of circulating inflammatory response similar in quantification of T1 and T2 on both groups. Furthermore, these results suggest that a number of interactions of CXCL-8, CXCL-9, CCL-2, IL-6, and IFN-γ in HF patients are directly affected by fibrinogen levels, which may be related to the inflammatory response and coagulation mutual relationship induced by B. atrox venom. The present study is the first report on inflammation-coagulation crosstalk involving snakebite patients and supports the better understanding of envenomation's pathophysiology mechanisms and guides in the search for novel biomarkers and prospective therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...