Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 82(6): 065109, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721732

ABSTRACT

Nucleation in a supercooled or a supersaturated medium is a stochastic event, and hence statistical analyses are required for the understanding and prediction of such events. The development of reliable statistical methods for quantifying nucleation probability is highly desirable for applications where control of nucleation is required. The nucleation of gas hydrates in supercooled conditions is one such application. We describe the design and development of a high pressure automated lag time apparatus (HP-ALTA) for the statistical study of gas hydrate nucleation and growth at elevated gas pressures. The apparatus allows a small volume (≈150 µl) of water to be cooled at a controlled rate in a pressurized gas atmosphere, and the temperature of gas hydrate nucleation, T(f), to be detected. The instrument then raises the sample temperature under controlled conditions to facilitate dissociation of the gas hydrate before repeating the cooling-nucleation cycle again. This process of forming and dissociating gas hydrates can be automatically repeated for a statistically significant (>100) number of nucleation events. The HP-ALTA can be operated in two modes, one for the detection of hydrate in the bulk of the sample, under a stirring action, and the other for the detection of the formation of hydrate films across the water-gas interface of a quiescent sample. The technique can be applied to the study of several parameters, such as gas pressure, cooling rate and gas composition, on the gas hydrate nucleation probability distribution for supercooled water samples.

2.
J Phys Chem B ; 111(36): 10713-22, 2007 Sep 13.
Article in English | MEDLINE | ID: mdl-17705418

ABSTRACT

The solid state and lyotropic phase behavior of 10 new nonionic urea-based surfactants has been characterized. The strong homo-urea interaction, which can prevent urea surfactants from forming lyotropic liquid crystalline phases, has been ameliorated through the use of isoprenoid hydrocarbon tails such as phytanyl (3,7,11,15-tetramethyl-hexadecyl) and hexahydrofarnesyl (3,7,11-trimethyl-dodecyl) or the oleyl chain (cis-octadec-9-enyl). Additionally, the urea head group was modified by attaching either a hydroxy alkyl (short chain alcohol) moiety to one of the nitrogens of the urea or by effectively "doubling" the urea head group by replacing it with a biuret head group. The solid state phase behavior, including the liquid crystal-isotropic liquid, polymorphic, and glass transitions, is interpreted in terms of molecular geometries and probable hydrogen-bonding interactions. Four of the modified urea surfactants displayed ordered lyotropic liquid crystalline phases that were stable in excess water at both room and physiological temperatures, namely, 1-(2-hydroxyethyl)-1-oleyl urea (oleyl 1,1-HEU) with a 1D lamellar phase (Lalpha), 1-(2-hydroxyethyl)-3-phytanyl urea (Phyt 1,3-HEU) with a 2D inverse hexagonal phase (HII), and 1-(2-hydroxyethyl)-1-phytanyl urea (Phyt 1,1-HEU) and 1-(2-hydroxyethyl)-3-hexahydrofarnesyl urea (Hfarn 1,3-HEU) with a 3D bicontinuous cubic phase (QII). Phyt 1,1-HEU exhibited rich mesomorphism (QII1, QII2, Lalpha, LU, and HII), as did one other surfactant, oleyl 1,3-HEU (QII1, QII2, Lalpha, LU, and HII), in the study group. LU is an unusual phase which is mobile and isotropic but possesses shear birefringence, and has been very tentatively assigned as an inverse sponge phase. Three other surfactants exhibited a single lyotropic liquid crystalline phase, either Lalpha or HII, at temperatures >50 degrees C. The 10 new surfactants are compared with other recently reported nonionic urea surfactants. Structure-property correlations are examined for this novel group of self-assembling amphiphiles.


Subject(s)
Phase Transition , Surface-Active Agents/chemistry , Urea/chemistry , Alcohols/chemistry , Ions/chemistry , Models, Chemical , Molecular Structure , Structure-Activity Relationship
3.
J Phys Chem B ; 110(25): 12660-5, 2006 Jun 29.
Article in English | MEDLINE | ID: mdl-16800599

ABSTRACT

The homo-interaction between urea moieties residing in close proximity to each other generally results in very strong intermolecular hydrogen bonding. The bifurcated hydrogen bonding exhibited by n-alkyl substituted ureas means that for those urea surfactants possessing medium and long hydrocarbon chain substituents the crystal to isotropic liquid melting point is high and the solubility in water is very low, compared to other similar chain length nonionic surfactants. In addition, saturated n-alkyl urea surfactants do not form lyotropic liquid crystalline phases in water. In this work the strong intermolecular hydrogen bonding of the urea headgroup has been ameliorated through the introduction of unsaturated hydrocarbon chains, viz., oleyl (cis-octadec-9-enyl), linoleyl (cis, cis-octadec-9,12-dienyl), and linolenyl (cis, cis, cis-octadec-9,12,15-trienyl) with one, two, and three carbon double bonds, respectively. Unsaturation in the C18 urea surfactants lowers the melting point and promotes an inverse hexagonal phase, in oleyl urea-water and linoleyl urea-water systems, which is thermodynamically stable in excess water. As the degree of unsaturation is increased to three in linolenyl urea, there is a tendency for autoxidation/polymerization. The occurrence of an inverse hexagonal phase in the nonionic urea surfactant-water systems has been rationalized in terms of both local molecular and global self-assembled aggregate packing constraints.

4.
J Phys Chem B ; 110(10): 5112-9, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16526754

ABSTRACT

The thermotropic and lyotropic phase behavior of 1- and 5-decyl urea, and 1-, 2-, 4-, and 6-dodecyl urea have been studied. This allowed the effect of positional isomerism to be examined. Intermolecular hydrogen bonding by the urea moiety is the dominant factor in determining the solid-state thermal behavior and crystal solubility boundary of these linear nonionic surfactants. The positional isomers where the urea moiety was not situated at the terminus of the hydrocarbon chain exhibited higher melting points than the 1-alkyl ureas. This has been rationalized by postulating interdigitated chains in the solid state. In the urea surfactant-water systems, three phases are observed, viz. crystalline solid, a dilute aqueous solution of the alkyl urea, and an isotropic liquid. The last two phases coexist in the low-surfactant, high-temperature region of the binary phase diagram. An overview of structure-property correlations for linear nonionic urea surfactants is presented in light of the new physicochemical data obtained for the decyl urea and dodecyl urea positional isomers.

SELECTION OF CITATIONS
SEARCH DETAIL
...