Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Leukoc Biol ; 100(5): 1011-1025, 2016 11.
Article in English | MEDLINE | ID: mdl-27531927

ABSTRACT

Skeletal muscle regeneration requires coordination between dynamic cellular populations and tissue microenvironments. Macrophages, recruited via CCR2, are essential for regeneration; however, the contribution of macrophages and the role of CCR2 on nonhematopoietic cells has not been defined. In addition, aging and sex interactions in regeneration and sarcopenia are unclear. Muscle regeneration was measured in young (3-6 mo), middle (11-15 mo), old (24-32 mo) male and female CCR2-/- mice. Whereas age-related muscle atrophy/sarcopenia was present, regenerated myofiber cross-sectional area (CSA) in CCR2-/- mice was comparably impaired across all ages and sexes, with increased adipocyte area compared with wild-type (WT) mice. CCR2-/- mice myofibers achieved approximately one third of baseline CSA even 84 d after injury. Regenerated CSA and clearance of necrotic tissue were dependent on bone marrow-derived cellular expression of CCR2. Myogenic progenitor cells isolated from WT and CCR2-/- mice exhibited comparable proliferation and differentiation capacity. The most striking cellular anomaly in injured muscle of CCR2-/- mice was markedly decreased macrophages, with a predominance of Ly6C- anti-inflammatory monocytes/macrophages. Ablation of proinflammatory TLR signaling did not affect muscle regeneration or resolution of necrosis. Of interest, many proinflammatory, proangiogenic, and chemotactic cytokines were markedly elevated in injured muscle of CCR2-/- relative to WT mice despite impairments in macrophage recruitment. Collectively, these results suggest that CCR2 on bone marrow-derived cells, likely macrophages, were essential to muscle regeneration independent of TLR signaling, aging, and sex. Decreased proinflammatory monocytes/macrophages actually promoted a proinflammatory microenvironment, which suggests that inflammaging was present in young CCR2-/- mice.


Subject(s)
Macrophages/physiology , Muscle, Skeletal/physiology , Myositis/physiopathology , Receptors, CCR2/deficiency , Regeneration/physiology , Adaptor Proteins, Vesicular Transport/deficiency , Aging/immunology , Animals , Body Weight , Cell Cycle , Cell Division , Cytokines/blood , Female , Inflammation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/physiology , Muscle Development , Muscle, Skeletal/injuries , Myeloid Differentiation Factor 88/deficiency , Myoblasts/pathology , Necrosis , Radiation Chimera , Receptors, CCR2/physiology , Sarcopenia/physiopathology , Specific Pathogen-Free Organisms
2.
J Investig Med High Impact Case Rep ; 4(1): 2324709615624125, 2016.
Article in English | MEDLINE | ID: mdl-26788530

ABSTRACT

Introduction. Klebsiella pneumoniae is a well-known cause of liver abscess. Higher rates of liver abscess associated with Klebsiella pneumoniae are seen in Taiwan. Metastatic endophthalmitis is a common complication associated with a poor prognosis despite aggressive therapy. Case Report. We report a case of a 67-year-old Korean female with Klebsiella pneumoniae liver abscess. The patient developed metastatic endophthalmitis and ultimately succumbed to her disease despite aggressive medical and surgical treatment. Conclusion. Dissemination of Klebsiella pneumoniae is associated with significant morbidity and mortality. Liver abscesses preferably should be treated with percutaneous drainage, but surgical treatment is needed in some cases. Metastatic spread to the eye is a common complication that must be treated aggressively with intravenous antibiotics and surgical intervention if necessary.

3.
Am J Physiol Regul Integr Comp Physiol ; 299(3): R832-42, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20631294

ABSTRACT

Muscle regeneration requires CC chemokine receptor 2 (CCR2) expression on bone marrow-derived cells; macrophages are a prominent CCR2-expressing cell in this process. CCR2-/- mice have severe impairments in angiogenesis, macrophage recruitment, and skeletal muscle regeneration following cardiotoxin (CTX)-induced injury. However, multiple chemokines activate CCR2, including monocyte chemotactic proteins (MCP)-1, -3, and -5. We hypothesized that MCP-1 is the chemokine ligand that mediates the impairments present in CCR2-/- mice. We examined muscle regeneration, capillary density, and cellular recruitment in MCP-1-/- and CCR2-/- mice following injury. Muscle regeneration and adipocyte accumulation, but not capillary density, were significantly impaired in MCP-1-/- compared with wild-type (WT) mice; however, muscle regeneration and adipocyte accumulation impairments were not as severe as observed in CCR2-/- mice. Although tissue levels of MCP-5 were elevated in MCP-1-/- mice compared with WT, the administration of MCP-5 neutralizing antibody did not alter muscle regeneration in MCP-1-/- mice. While neutrophil accumulation after injury was similar in all three mouse strains, macrophage recruitment was highest in WT mice, intermediate in MCP-1-/- mice, and severely impaired in CCR2-/- mice. In conclusion, while the absence of MCP-1 resulted in impaired macrophage recruitment and muscle regeneration, MCP-1-/- mice exhibit an intermediate phenotype compared with CCR2-/- mice. Intermediate macrophage recruitment in MCP-1-/- mice was associated with similar capillary density to WT, suggesting that fewer macrophages may be needed to restore angiogenesis vs. muscle regeneration. Finally, other chemokines, in addition to MCP-1 and MCP-5, may activate CCR2-dependent regenerative processes resulting in an intermediate phenotype in MCP-1-/- mice.


Subject(s)
Chemokines/metabolism , Macrophages/physiology , Muscle, Skeletal/physiology , Receptors, CCR2/metabolism , Regeneration/physiology , Animals , Cardiotoxins/toxicity , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/drug effects , Muscular Diseases/chemically induced , Receptors, CCR2/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL