Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(24): 35490-35497, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379662

ABSTRACT

We investigate here terahertz enhancement effects arising from micrometer and nanometer structured electrode features of photoconductive terahertz emitters. Nanostructured electrode based emitters utilizing the palsmonic effect are currently one of the hottest topics in the research field. We demonstrate here that even in the absence of any plasmonic resonance with the pump pulse, such structures can improve the antenna effect by enhancing the local d.c. electric field near the structure edges. Utilizing this effect in Hilbert-fractal and grating-like designs, enhancement of the THz field of up to a factor of ∼ 2 is observed. We conclude that the cause of this THz emission enhancement in our emitters is different from the earlier reported plasmonic-electrode effect in a similar grating-like structure. In our structure, the proximity of photoexcited carriers to the electrodes and local bias field enhancement close to the metallization cause the enhanced efficiency. Due to the nature of this effect, the THz emission efficiency is almost independent of the pump laser polarization. Compared to the plasmonic effect, these effects work under relaxed device fabrication and operating conditions.

2.
Light Sci Appl ; 9: 30, 2020.
Article in English | MEDLINE | ID: mdl-32140221

ABSTRACT

Phase-stable electromagnetic pulses in the THz frequency range offer several unique capabilities in time-resolved spectroscopy. However, the diversity of their application is limited by the covered spectral bandwidth. In particular, the upper frequency limit of photoconductive emitters - the most widespread technique in THz spectroscopy - reaches only up to 7 THz in the regular transmission mode due to absorption by infrared-active optical phonons. Here, we present ultrabroadband (extending up to 70 THz) THz emission from an Au-implanted Ge emitter that is compatible with mode-locked fibre lasers operating at wavelengths of 1.1 and 1.55 µm with pulse repetition rates of 10 and 20 MHz, respectively. This result opens up the possibility for the development of compact THz photonic devices operating up to multi-THz frequencies that are compatible with Si CMOS technology.

3.
Opt Express ; 27(9): 13108-13115, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052840

ABSTRACT

We study here the effect of the electrode parameters on the terahertz emission efficiency of large-area emitters based on interdigitated electrodes. Electrode parameters are optimized to get maximum terahertz emission by optimizing the balance condition among the emission efficiency of individual electrode pairs, number of emitters per unit area, and fraction of semiconductor exposed for optical pumping. A maximum enhancement by about 50% in the peak to peak electric field is observed as compared to the previous state of the art design.

SELECTION OF CITATIONS
SEARCH DETAIL
...