Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 11(3): 3404-3412, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28282115

ABSTRACT

Graphene and related two-dimensional (2D) materials possess outstanding electronic and mechanical properties, chemical stability, and high surface area. However, to realize graphene's potential for a range of applications in materials science and nanotechnology there is a need to understand and control the interaction of graphene with tailored high-performance surfactants designed to facilitate the preparation, manipulation, and functionalization of new graphene systems. Here we report a combined experimental and theoretical study of the surface structure and dynamics on graphene of pyrene-oligoethylene glycol (OEG) -based surfactants, which have previously been shown to disperse carbon nanotubes in water. Molecular self-assembly of the surfactants on graphitic surfaces is experimentally monitored and optimized using a graphene coated quartz crystal microbalance in ambient and vacuum environments. Real-space nanoscale resolution nanomechanical and topographical mapping of submonolayer surfactant coverage, using ultrasonic and atomic force microscopies both in ambient and ultrahigh vacuum, reveals complex, multilength-scale self-assembled structures. Molecular dynamics simulations show that at the nanoscale these structures, on atomically flat graphitic surfaces, are dependent upon the surfactant OEG chain length and are predicted to display a previously unseen class of 2D self-arranged "starfish" micelles (2DSMs). While three-dimensional micelles are well-known for their widespread uses ranging from microreactors to drug-delivery vehicles, these 2DSMs possess the highly desirable and tunable characteristics of high surface affinity coupled with unimpeded mobility, opening up strategies for processing and functionalizing 2D materials.

2.
Chemistry ; 21(10): 3891-4, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25639258

ABSTRACT

Easily reversible aqueous dispersion/precipitation of multiwalled carbon nanotubes (MWNTs) has been demonstrated using small-molecule non-ionic pyrene-based surfactants, which exhibit lower critical solution temperature (LCST) phase behaviour. The MWNTs are dispersed by means of non-covalent interactions. The dispersibility can be switched "off" (i.e., MWNTs precipitated) upon heating and switched "on" (i.e., MWNTs re-dispersed) upon cooling and merely swirling the sample at room temperature, that is, under very mild conditions. This effect is also observed under high ionic strength conditions with NaCl in the aqueous phase.

3.
Org Biomol Chem ; 11(19): 3177-86, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23563170

ABSTRACT

We report the synthesis of four different RGD peptide derivatives which spontaneously self-assemble into nanoscale architectures. Depending on the information programmed into the molecular-scale building blocks by organic synthesis, these compounds assemble into different nanoscale morphologies. This process can be fully understood using multiscale modelling which provides predictive insight into subtle differences, such as whether the compounds form spherical micelles, rod-like cylinders or tubular assemblies, and predicts experimentally observed critical aggregation concentrations (CACs). We then probe the multivalent binding of these assemblies to integrin proteins and demonstrate that the spherical micellar assemblies perform well in our solution-phase integrin binding assay as a consequence of self-assembled multivalency, with the CAC switching-on the binding. Conversely, the cylindrical assemblies do not work in this assay. As such, the nanoscale morphology controls the apparent ability to perform as a self-assembled multivalent ligand array.


Subject(s)
Integrins/chemistry , Oligopeptides/chemical synthesis , Binding Sites , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Structure , Oligopeptides/chemistry , Particle Size , Surface Properties
4.
Org Biomol Chem ; 9(13): 4795-801, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21584343

ABSTRACT

This paper compares covalent and non-covalent approaches for the organisation of ligand arrays to bind integrins. In the covalent strategy, linear RGD peptides are conjugated to first and second generation dendrons, and using a fluorescence polarisation competition assay, the first generation compound is demonstrated to show the most effective integrin binding, with an EC(50) of 125 µM (375 µM per peptide unit). As such, this dendritic compound is significantly more effective than a monovalent ligand, which does not bind integrin, even at concentrations as high as 1 mM. However, the second generation compound is significantly less effective, demonstrating that there is an optimum ligand density for multivalency in this case. In the non-covalent approach to multivalency, the same RGD peptide is functionalised with a hydrophobic C12 chain, giving rise to a lipopeptide which is demonstrated to be capable of self-assembly. This lipopeptide is capable of effective integrin binding at concentrations of 200 µM. These results therefore demonstrate that covalent (dendritic) and non-covalent (micellar self-assembly) approaches have, in this case, comparable efficiency in terms of achieving multivalent organisation of a ligand array.


Subject(s)
Integrins/chemistry , Oligopeptides/chemistry , Hydrophobic and Hydrophilic Interactions , Integrins/metabolism , Integrins/ultrastructure , Microscopy, Electron, Transmission , Molecular Structure , Oligopeptides/chemical synthesis , Oligopeptides/metabolism , Protein Binding
5.
Angew Chem Int Ed Engl ; 48(22): 4047-51, 2009.
Article in English | MEDLINE | ID: mdl-19402085

ABSTRACT

Now you bind it--now you don't! Chemical degradation of a dendritic scaffold allows multivalent interactions with DNA to be "switched off" as the multivalent array of ligands breaks down into smaller fragments, offering an approach by which a molecule can be temporarily endowed with high affinity for a biological target--an important concept in the development of new synthetic systems to intervene in biological pathways.


Subject(s)
DNA/chemistry , Dendrimers/chemistry , Animals , Cattle
SELECTION OF CITATIONS
SEARCH DETAIL
...