Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 58(23): 2666-2683.e9, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37875116

ABSTRACT

Mutations in the degradative ubiquitin ligase anaphase-promoting complex (APC) alter neurodevelopment by impairing proteasomal protein clearance, but our understanding of their molecular and cellular pathogenesis remains limited. Here, we employ the proteomic-based discovery of APC substrates in APC mutant mouse brain and human cell lines and identify the chromosome-passenger complex (CPC), topoisomerase 2a (Top2a), and Ki-67 as major chromatin factors targeted by the APC during neuronal differentiation. These substrates accumulate in phosphorylated form, suggesting that they fail to be eliminated after mitosis during terminal differentiation. The accumulation of the CPC kinase Aurora B within constitutive heterochromatin and hyperphosphorylation of its target histone 3 are corrected in the mutant brain by pharmacologic Aurora B inhibition. Surprisingly, the reduction of Ki-67, but not H3S10ph, rescued the function of constitutive heterochromatin in APC mutant neurons. These results expand our understanding of how ubiquitin signaling regulates chromatin during neurodevelopment and identify potential therapeutic targets in APC-related disorders.


Subject(s)
Anaphase , Chromatin , Mice , Animals , Humans , Anaphase-Promoting Complex-Cyclosome/metabolism , Heterochromatin , Phosphoproteins/metabolism , Ki-67 Antigen/metabolism , Proteomics , Ubiquitination , Mitosis , Ubiquitin/metabolism , Cell Cycle Proteins/metabolism
2.
Nat Struct Mol Biol ; 30(11): 1663-1674, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735619

ABSTRACT

Substrate polyubiquitination drives a myriad of cellular processes, including the cell cycle, apoptosis and immune responses. Polyubiquitination is highly dynamic, and obtaining mechanistic insight has thus far required artificially trapped structures to stabilize specific steps along the enzymatic process. So far, how any ubiquitin ligase builds a proteasomal degradation signal, which is canonically regarded as four or more ubiquitins, remains unclear. Here we present time-resolved cryogenic electron microscopy studies of the 1.2 MDa E3 ubiquitin ligase, known as the anaphase-promoting complex/cyclosome (APC/C), and its E2 co-enzymes (UBE2C/UBCH10 and UBE2S) during substrate polyubiquitination. Using cryoDRGN (Deep Reconstructing Generative Networks), a neural network-based approach, we reconstruct the conformational changes undergone by the human APC/C during polyubiquitination, directly visualize an active E3-E2 pair modifying its substrate, and identify unexpected interactions between multiple ubiquitins with parts of the APC/C machinery, including its coactivator CDH1. Together, we demonstrate how modification of substrates with nascent ubiquitin chains helps to potentiate processive substrate polyubiquitination, allowing us to model how a ubiquitin ligase builds a proteasomal degradation signal.


Subject(s)
Anaphase , Ubiquitin , Humans , Anaphase-Promoting Complex-Cyclosome/chemistry , Cryoelectron Microscopy , Ubiquitination , Ubiquitin/metabolism , Cell Cycle Proteins/metabolism
3.
Protein Sci ; 31(6): e4324, 2022 06.
Article in English | MEDLINE | ID: mdl-35634770

ABSTRACT

Proper protein destruction by the ubiquitin (Ub)-proteasome system is vital for a faithful cell cycle. Hence, the activity of Ub ligases is tightly controlled. The Anaphase-Promoting Complex/Cyclosome (APC/C) is a 1.2 MDa Ub ligase responsible for mitotic progression and G1 maintenance. At the G1/S transition, the APC/C is inhibited by EMI1 to prevent APC/C-dependent polyubiquitination of cell cycle effectors. EMI1 uses several interaction motifs to block the recruitment of APC/C substrates as well as the APC/C-associated E2s, UBE2C, and UBE2S. Paradoxically, EMI1 is also an APC/C substrate during G1. Using a comprehensive set of enzyme assays, we determined the context-dependent involvement of the EMI1 motifs in APC/C-dependent ubiquitination of EMI1 and other substrates. Furthermore, we demonstrated that an isolated C-terminal peptide fragment of EMI1 activates APC/C-dependent substrate priming by UBE2C. Together, these findings reveal the multiple roles of the EMI1 C-terminus for G1 maintenance and the G1/S transition.


Subject(s)
F-Box Proteins , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle/physiology , Cell Cycle Proteins/metabolism , F-Box Proteins/metabolism , Interphase/physiology , Ubiquitin/metabolism
4.
EMBO J ; 41(3): e108823, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34942047

ABSTRACT

Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2HTH motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2SHTH reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2HTH motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.


Subject(s)
Ubiquitin-Conjugating Enzymes/chemistry , Amino Acid Motifs , Catalytic Domain , Humans , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
5.
Front Cell Dev Biol ; 9: 687515, 2021.
Article in English | MEDLINE | ID: mdl-34109183

ABSTRACT

The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...