Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Virology ; 539: 26-37, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31670188

ABSTRACT

In addition to direct anti-viral activity, NK cells regulate viral pathogenesis by virtue of their cytolytic attack on activated CD4 and CD8 T cells. To gain insight into which differentiated T cell subsets are preferred NK targets, transgenic T cells were differentiated in vitro into Th0, Th1, Th2, Th17, Treg, Tc1, and Tc2 effector cells and then tested for lysis by enriched populations of lymphocytic choriomeningitis virus (LCMV)-induced activated NK cells. There was a distinct hierarchy of cytotoxicity in vitro and in vivo, with Treg, Th17, and Th2 cells being more sensitive and Th0 and Th1 cells more resistant. Some distinctions between in vitro vs in vivo generated T cells were explainable by type 1 interferon induction of class 1 histocompatibility antigens on the effector T cell subsets. NK receptor (NKR)-deficient mice and anti-NKR antibody studies identified no one essential NKR for killing, though there could be redundancies.


Subject(s)
Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , T-Lymphocyte Subsets/immunology , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/drug effects , Interferons/genetics , Interferons/pharmacology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Natural Killer Cell/antagonists & inhibitors , Receptors, Natural Killer Cell/genetics , T-Lymphocyte Subsets/drug effects
2.
J Immunol ; 202(3): 647-651, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30610162

ABSTRACT

Apoptosis of CD8 T cells is an essential mechanism that maintains immune system homeostasis, prevents autoimmunity, and reduces immunopathology. CD8 T cell death also occurs early during the response to both inflammation and costimulation blockade (CoB). In this article, we studied the effects of a combined deficiency of Fas (extrinsic pathway) and Bim (intrinsic pathway) on early T cell attrition in response to lymphocytic choriomeningitis virus infection and during CoB during transplantation. Loss of Fas and Bim function in Bcl2l11-/-Faslpr/lpr mice inhibited apoptosis of T cells and prevented the early T cell attrition resulting from lymphocytic choriomeningitis virus infection. Bcl2l11-/-Faslpr/lpr mice were also resistant to prolonged allograft survival induced by CoB targeting the CD40-CD154 pathway. These results demonstrate that both extrinsic and intrinsic apoptosis pathways function concurrently to regulate T cell homeostasis during the early stages of immune responses and allograft survival during CoB.


Subject(s)
Apoptosis , Bcl-2-Like Protein 11/genetics , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Inflammation/immunology , fas Receptor/genetics , Animals , Arenaviridae Infections/immunology , CD8-Positive T-Lymphocytes/virology , Gene Expression Regulation , Homeostasis , Lymphocytic choriomeningitis virus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Skin Transplantation
3.
Virology ; 519: 131-144, 2018 06.
Article in English | MEDLINE | ID: mdl-29715623

ABSTRACT

Natural killer (NK) cells control antiviral adaptive immune responses in mice during some virus infections, but the universality of this phenomenon remains unknown. Lymphocytic choriomeningitis virus (LCMV) infection of mice triggered potent cytotoxic activity of NK cells (NKLCMV) against activated CD4 T cells, tumor cells, and allogeneic lymphocytes. In contrast, NK cells activated by vaccinia virus (VACV) infection (NKVACV) exhibited weaker cytolytic activity against each of these target cells. Relative to NKLCMV cells, NKVACV cells exhibited a more immature (CD11b-CD27+) phenotype, and lower expression levels of the activation marker CD69, cytotoxic effector molecules (perforin, granzyme B), and the transcription factor IRF4. NKVACV cells expressed higher levels of the inhibitory molecule NKG2A than NKLCMV cells. Consistent with this apparent lethargy, NKVACV cells only weakly constrained VACV-specific CD4 T-cell responses. This suggests that NK cell regulation of adaptive immunity, while universal, may be limited with viruses that poorly activate NK cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Killer Cells, Natural/physiology , Vaccinia virus/immunology , Vaccinia/immunology , Adaptive Immunity , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Differentiation , Granzymes/genetics , Immunity, Humoral , Interferon Regulatory Factors/genetics , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Lymphocyte Activation , Lymphocytic Choriomeningitis , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily C/genetics , Perforin/genetics , Vaccinia virus/genetics
4.
mBio ; 8(6)2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29208744

ABSTRACT

Fifty years after the discovery of Epstein-Barr virus (EBV), it remains unclear how primary infection with this virus leads to massive CD8 T-cell expansion and acute infectious mononucleosis (AIM) in young adults. AIM can vary greatly in severity, from a mild transient influenza-like illness to a prolonged severe syndrome. We questioned whether expansion of a unique HLA-A2.01-restricted, cross-reactive CD8 T-cell response between influenza virus A-M158 (IAV-M1) and EBV BMLF1280 (EBV-BM) could modulate the immune response to EBV and play a role in determining the severity of AIM in 32 college students. Only ex vivo total IAV-M1 and IAV-M1+EBV-BM cross-reactive tetramer+ frequencies directly correlated with AIM severity and were predictive of severe disease. Expansion of specific cross-reactive memory IAV-M1 T-cell receptor (TCR) Vß repertoires correlated with levels of disease severity. There were unique profiles of qualitatively different functional responses in the cross-reactive and EBV-specific CD8 T-cell responses in each of the three groups studied, severe-AIM patients, mild-AIM patients, and seropositive persistently EBV-infected healthy donors, that may result from differences in TCR repertoire use. IAV-M1 tetramer+ cells were functionally cross-reactive in short-term cultures, were associated with the highest disease severity in AIM, and displayed enhanced production of gamma interferon, a cytokine that greatly amplifies immune responses, thus frequently contributing to induction of immunopathology. Altogether, these data link heterologous immunity via CD8 T-cell cross-reactivity to CD8 T-cell repertoire selection, function, and resultant disease severity in a common and important human infection. In particular, it highlights for the first time a direct link between the TCR repertoire with pathogenesis and the diversity of outcomes upon pathogen encounter.IMPORTANCE The pathogenic impact of immune responses that by chance cross-react to unrelated viruses has not been established in human infections. Here, we demonstrate that the severity of acute infectious mononucleosis (AIM), an Epstein-Barr virus (EBV)-induced disease prevalent in young adults but not children, is associated with increased frequencies of T cells cross-reactive to EBV and the commonly acquired influenza A virus (IAV). The T-cell receptor (TCR) repertoire and functions of these cross-reactive T cells differed between mild- and severe-AIM patients, most likely because these two groups of patients had selected different memory TCR repertoires in response to IAV infections encountered earlier. This heterologous immunity may explain variability in disease outcome and why young adults with more-developed IAV-specific memory T-cell pools have more-severe disease than children, who have less-developed memory pools. This study provides a new framework for understanding the role of heterologous immunity in human health and disease and highlights an important developing field examining the role of T-cell repertoires in the mediation of immunopathology.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Infectious Mononucleosis/immunology , Influenza, Human/immunology , Receptors, Antigen, T-Cell/immunology , Viral Matrix Proteins/immunology , Antigens, Viral/immunology , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Female , HLA-A2 Antigen/immunology , Herpesvirus 4, Human/immunology , Humans , Immunity, Heterologous , Influenza A virus/immunology , Interferon-gamma/metabolism , Lymphocyte Activation , Male , Receptors, Antigen, T-Cell/metabolism , Severity of Illness Index , Young Adult
5.
PLoS Pathog ; 13(8): e1006544, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28827827

ABSTRACT

Virus infections induce CD8+ T cell responses comprised of a large population of terminal effector cells and a smaller subset of long-lived memory cells. The transcription factors regulating the relative expansion versus the long-term survival potential of anti-viral CD8+ T cells are not completely understood. We identified ZBTB32 as a transcription factor that is transiently expressed in effector CD8+ T cells. After acute virus infection, CD8+ T cells deficient in ZBTB32 showed enhanced virus-specific CD8+ T cell responses, and generated increased numbers of virus-specific memory cells; in contrast, persistent expression of ZBTB32 suppressed memory cell formation. The dysregulation of CD8+ T cell responses in the absence of ZBTB32 was catastrophic, as Zbtb32-/- mice succumbed to a systemic viral infection and showed evidence of severe lung pathology. We found that ZBTB32 and Blimp-1 were co-expressed following CD8+ T cell activation, bound to each other, and cooperatively regulated Blimp-1 target genes Eomes and Cd27. These findings demonstrate that ZBTB32 is a key transcription factor in CD8+ effector T cells that is required for the balanced regulation of effector versus memory responses to infection.


Subject(s)
Arenaviridae Infections/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Repressor Proteins/immunology , Adoptive Transfer , Animals , Chromatin Immunoprecipitation , Disease Models, Animal , Flow Cytometry , Lymphocyte Activation/immunology , Lymphocytic choriomeningitis virus/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Polymerase Chain Reaction , Repressor Proteins/biosynthesis
6.
Elife ; 62017 07 24.
Article in English | MEDLINE | ID: mdl-28737488

ABSTRACT

The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Cell Differentiation , MicroRNAs/metabolism , Animals , Mice
7.
J Virol ; 91(2)2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27807227

ABSTRACT

One's history of infections can affect the immune response to unrelated pathogens and influence disease outcome through the process of heterologous immunity. This can occur after acute viral infections, such as infections with lymphocytic choriomeningitis virus (LCMV) and vaccinia virus, where the pathogens are cleared, but it becomes a more complex issue in the context of persistent infections. In this study, murine cytomegalovirus (MCMV) was used as a persistent infection model to study heterologous immunity with LCMV. If mice were previously immune to LCMV and then infected with MCMV (LCMV+MCMV), they had more severe immunopathology, enhanced viral burden in multiple organs, and suppression of MCMV-specific T cell memory inflation. MCMV infection initially reduced the numbers of LCMV-specific memory T cells, but continued MCMV persistence did not further erode memory T cells specific to LCMV. When MCMV infection was given first (MCMV+LCMV), the magnitude of the acute T cell response to LCMV declined with age though this age-dependent decline was not dependent on MCMV. However, some of these MCMV persistently infected mice with acute LCMV infection (7 of 36) developed a robust immunodominant CD8 T cell response apparently cross-reactive between a newly defined putative MCMV epitope sequence, M57727-734, and the normally subdominant LCMV epitope L2062-2069, indicating a profound private specificity effect in heterologous immunity between these two viruses. These results further illustrate how a history of an acute or a persistent virus infection can substantially influence the immune responses and immune pathology associated with acute or persistent infections with an unrelated virus. IMPORTANCE: This study extends our understanding of heterologous immunity in the context of persistent viral infection. The phenomenon has been studied mostly with viruses such as LCMV that are cleared, but the situation can be more complex with a persistent virus such as MCMV. We found that the history of LCMV infection intensifies MCMV immunopathology, enhances MCMV burden in multiple organs, and suppresses MCMV-specific T cell memory inflation. In the reverse infection sequence, we show that some of the long-term MCMV-immune mice mount a robust CD8 T cell cross-reactive response between a newly defined putative MCMV epitope sequence and a normally subdominant LCMV epitope. These results further illustrate how a history of infection can substantially influence the immune responses and immune pathology associated with infections with an unrelated virus.


Subject(s)
Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Host-Pathogen Interactions/immunology , Immunity, Heterologous , Muromegalovirus/physiology , Age Factors , Animals , Cross Reactions , Immunologic Memory , Lymphocytic choriomeningitis virus/immunology , Male , Mice , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Viral Load
8.
Virology ; 493: 52-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26999026

ABSTRACT

Naïve T cells, unlike memory T cells, exhibit very limited effector function in response to cognate antigen, but exposure to type 1 interferon (IFN) prior to cognate antigen allows for rapid manifestation of effector functions. A full assessment of the functions of these IFN-sensitized otherwise naïve T cells has not been made, nor has their capacity to be effector cells in vivo. We describe here that IFN-sensitized naïve T cells in the absence of cognate antigen adopt a partial activated phenotype distinguished by the upregulation of the surface activation marker CD69, effector-associated transcription factors Eomes and IRF4, and cytotoxicity effector molecule granzyme B. IFN-sensitized naive T cells lysed target cells in vivo and responded to low concentrations and affinities of cognate ligands. We suggest that this rapid and sensitive effector function of IFN-conditioned naïve CD8 T cells may play a role in pathogen control and help ward off superinfections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Interferon Type I/immunology , Lymphocyte Activation , Animals , Antigens, CD/biosynthesis , Antigens, Differentiation, T-Lymphocyte/biosynthesis , Immunophenotyping , Lectins, C-Type/biosynthesis , Male , Mice, Inbred C57BL , Poly I-C/immunology
9.
J Immunol ; 196(1): 407-15, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26582950

ABSTRACT

The cytokine IL-1ß is intimately linked to many pathological inflammatory conditions. Mature IL-1ß secretion requires cleavage by the inflammasome. Recent evidence indicates that many cell death signal adaptors have regulatory roles in inflammasome activity. These include the apoptosis inducers FADD and caspase 8, and the necroptosis kinases receptor interacting protein kinase 1 (RIPK1) and RIPK3. PGAM5 is a mitochondrial phosphatase that has been reported to function downstream of RIPK3 to promote necroptosis and IL-1ß secretion. To interrogate the biological function of PGAM5, we generated Pgam5(-/-) mice. We found that Pgam5(-/-) mice were smaller compared with wild type littermates, and male Pgam5(-/-) mice were born at sub-Mendelian ratio. Despite these growth and survival defects, Pgam5(-/-) cells responded normally to multiple inducers of apoptosis and necroptosis. Rather, we found that PGAM5 is critical for IL-1ß secretion in response to NLRP3 and AIM2 inflammasome agonists. Moreover, vesicular stomatosis virus-induced IL-1ß secretion was impaired in Pgam5(-/-) bone marrow-derived macrophages, but not in Ripk3(-/-) bone marrow-derived dendritic cells, indicating that PGAM5 functions independent of RIPK3 to promote inflammasome activation. Mechanistically, PGAM5 promotes ASC polymerization, maintenance of mitochondrial integrity, and optimal reactive oxygen species production in response to inflammasome signals. Hence PGAM5 is a novel regulator of inflammasome and caspase 1 activity that functions independently of RIPK3.


Subject(s)
Apoptosis/immunology , Inflammasomes/immunology , Interleukin-1beta/metabolism , Macrophages/immunology , Phosphoric Monoester Hydrolases/genetics , Animals , Carrier Proteins/immunology , Caspase 1/immunology , Caspase 8/immunology , Cells, Cultured , DNA-Binding Proteins/immunology , Dendritic Cells/immunology , Fas-Associated Death Domain Protein/immunology , Inflammation/immunology , Interleukin-1beta/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/immunology , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphoprotein Phosphatases , Phosphoric Monoester Hydrolases/metabolism , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Signal Transduction/immunology , Vesicular stomatitis Indiana virus/immunology
10.
PLoS One ; 10(12): e0144826, 2015.
Article in English | MEDLINE | ID: mdl-26714260

ABSTRACT

CD8+ T cell exhaustion commonly occurs in chronic infections and cancers. During T cell exhaustion there is a progressive and hierarchical loss of effector cytokine production, up-regulation of inhibitory co-stimulatory molecules, and eventual deletion of antigen specific cells by apoptosis. A key factor that regulates T cell exhaustion is persistent TCR stimulation. Loss of this interaction results in restoration of CD8+ T cell effector functions in previously exhausted CD8+ T cells. TCR stimulation is also important for the differentiation of Eomeshi anti-viral CD8+ effector T cells from T-bethi precursors, both of which are required for optimal viral control. However, the molecular mechanisms regulating the differentiation of these two cell subsets and the relative ratios required for viral clearance have not been described. We show that TCR signal strength regulates the relative expression of T-bet and Eomes in antigen-specific CD8+ T cells by modulating levels of IRF4. Reduced IRF4 expression results in skewing of this ratio in the favor of Eomes, leading to lower proportions and numbers of T-bet+ Eomes- precursors and poor control of LCMV-clone 13 infection. Manipulation of this ratio in the favor of T-bet restores the differentiation of T-bet+ Eomes- precursors and the protective balance of T-bet to Eomes required for efficient viral control. These data highlight a critical role for IRF4 in regulating protective anti-viral CD8+ T cell responses by ensuring a balanced ratio of T-bet to Eomes, leading to the ultimate control of this chronic viral infection.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Interferon Regulatory Factors/metabolism , Lymphocytic choriomeningitis virus/physiology , T-Box Domain Proteins/metabolism , Amino Acid Sequence , Animals , Cell Differentiation , Cell Line , Cricetinae , Gene Expression Regulation , Male , Mice , Molecular Sequence Data , Signal Transduction
11.
Virology ; 482: 89-97, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25838115

ABSTRACT

Heterologous immunity refers to the phenomenon whereby a history of an immune response against one pathogen can provide a level of immunity to a second unrelated pathogen. Previous investigations have shown that heterologous immunity is not necessarily reciprocal, such as in the case of vaccinia virus (VACV). Replication of VACV is reduced in mice immune to a variety of pathogens, while VACV fails to induce immunity to several of the same pathogens, including lymphocytic choriomeningitis virus (LCMV). Here we examine the lack of reciprocity of heterologous immunity between VACV and LCMV and find that they induce qualitatively different memory CD8 T cells. However, depending on the repertoire of an individual host, VACV can provide protection against LCMV simply by experimentally amplifying the quantity of T cells cross-reactive with the two viruses. Thus, one cause for lack of reciprocity is differences in the frequencies of cross-reactive T cells in immune hosts.


Subject(s)
Arenaviridae/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Heterologous , T-Lymphocyte Subsets/immunology , Vaccinia virus/immunology , Animals , Immunologic Memory , Male , Mice, Inbred C57BL
12.
Nat Commun ; 6: 6375, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25721802

ABSTRACT

The goal of most vaccines is the induction of long-lived memory T and B cells capable of protecting the host from infection by cytotoxic mechanisms, cytokines and high-affinity antibodies. However, efforts to develop vaccines against major human pathogens such as HIV and HCV have not been successful, thereby highlighting the need for novel approaches to circumvent immunoregulatory mechanisms that limit the induction of protective immunity. Here, we show that mouse natural killer (NK) cells inhibit generation of long-lived virus-specific memory T- and B cells as well as virus-specific antibody production after acute infection. Mechanistically, NK cells suppressed CD4 T cells and follicular helper T cells (T(FH)) in a perforin-dependent manner during the first few days of infection, resulting in a weaker germinal centre (GC) response and diminished immune memory. We anticipate that innovative strategies to relieve NK cell-mediated suppression of immunity should facilitate development of efficacious new vaccines targeting difficult-to-prevent infections.


Subject(s)
Arenaviridae Infections/immunology , B-Lymphocytes/immunology , Immunity, Cellular/immunology , Immunologic Memory/immunology , Killer Cells, Natural/immunology , Lymphocytic choriomeningitis virus , Animals , Antibodies, Monoclonal , Chromatography, Gas , Cytokines/immunology , Flow Cytometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Viral Plaque Assay
13.
J Virol ; 89(4): 2112-20, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25473049

ABSTRACT

UNLABELLED: Regulatory T (Treg) cells are important in the maintenance of self-tolerance, and the depletion of Treg cells correlates with autoimmune development. It has been shown that type I interferon (IFN) responses induced early in the infection of mice can drive memory (CD44hi) CD8 and CD4 T cells into apoptosis, and we questioned here whether the apoptosis of CD44-expressing Treg cells might be involved in the infection-associated autoimmune development. Instead, we found that Treg cells were much more resistant to apoptosis than CD44hi CD8 and CD4 T cells at days 2 to 3 after lymphocytic choriomeningitis virus infection, when type I IFN levels are high. The infection caused a downregulation of the interleukin-7 (IL-7) receptor, needed for survival of conventional T cells, while increasing on Treg cells the expression of the high-affinity IL-2 receptor, needed for STAT5-dependent survival of Treg cells. The stably maintained Treg cells early during infection may explain the relatively low incidence of autoimmune manifestations among infected patients. IMPORTANCE: Autoimmune diseases are controlled in part by regulatory T cells (Treg) and are thought to sometimes be initiated by viral infections. We tested the hypothesis that Treg may die off at early stages of infection, when virus-induced factors kill other lymphocyte types. Instead, we found that Treg resisted this cell death, perhaps reducing the tendency of viral infections to cause immune dysfunction and induce autoimmunity.


Subject(s)
Apoptosis , Arenaviridae Infections/immunology , Lymphocytic choriomeningitis virus/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/virology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Survival , Gene Expression Regulation , Interferon Type I/immunology , Interleukin-7/biosynthesis , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/physiology
14.
PLoS Pathog ; 10(9): e1004357, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25255454

ABSTRACT

Virus infections are known to induce a transient state of immune suppression often associated with an inhibition of T cell proliferation in response to mitogen or cognate-antigen stimulation. Recently, virus-induced immune suppression has been linked to responses to type 1 interferon (IFN), a signal 3 cytokine that normally can augment the proliferation and differentiation of T cells exposed to antigen (signal 1) and co-stimulation (signal 2). However, pre-exposure of CD8 T cells to IFN-inducers such as viruses or poly(I∶C) prior to antigen signaling is inhibitory, indicating that the timing of IFN exposure is of essence. We show here that CD8 T cells pretreated with poly(I∶C) down-regulated the IFN receptor, up-regulated suppressor of cytokine signaling 1 (SOCS1), and were refractory to IFNß-induced signal transducers and activators of transcription (STAT) phosphorylation. When exposed to a viral infection, these CD8 T cells behaved more like 2-signal than 3-signal T cells, showing defects in short lived effector cell differentiation, reduced effector function, delayed cell division, and reduced levels of survival proteins. This suggests that IFN-pretreated CD8 T cells are unable to receive the positive effects that type 1 IFN provides as a signal 3 cytokine when delivered later in the signaling process. This desensitization mechanism may partially explain why vaccines function poorly in virus-infected individuals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunosuppression Therapy , Interferon Type I/metabolism , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Blotting, Western , Cells, Cultured , Interferon Type I/genetics , Lymphocyte Activation , Lymphocytic Choriomeningitis/virology , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Poly I-C/pharmacology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Virus Activation/drug effects
15.
Virology ; 464-465: 213-217, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25094042

ABSTRACT

Having a history of infection with one pathogen may sometimes provide a level of T cell-dependent protective heterologous immunity to another pathogen. This immunity was initially thought due to cross-reactive T cell epitopes, but recent work has suggested that such protective immunity can be initiated nonspecifically by the action of cytokines on memory T cells. We retested this concept using two small and well-defined arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Pichinde virus (PV), and found that heterologous immunity in these systems was indeed linked to T cell epitopes and the major histocompatibility complex.


Subject(s)
Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Immunity, Heterologous , Lymphocytic choriomeningitis virus/immunology , Major Histocompatibility Complex , Pichinde virus/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cross Protection , Cross Reactions , Epitopes, T-Lymphocyte/immunology , Humans , Male , Mice , Mice, Inbred C57BL
16.
J Virol ; 88(17): 9490-503, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24942579

ABSTRACT

UNLABELLED: Virus-specific CD8+ T cells in the lymphoid organs contract at the resolution of virus infections by apoptosis or by dissemination into peripheral tissues, and those residing in nonlymphoid organs, including the peritoneal cavity and fat pads, are more resistant to apoptosis than those in the spleen and lymph nodes. This stability of memory T cells in the nonlymphoid tissues may enhance protection to secondary challenges. Here, we show that lymphocytic choriomeningitis virus (LCMV)-specific CD8+ T cells in nonlymphoid tissues were enriched for memory precursors (expressing high levels of interleukin-7 receptor and low levels of killer cell lectin-like receptor G1 [IL-7Rhi KLRG1lo]) and had higher expression of CD27, CXCR3, and T cell factor-1 (TCF-1), each a marker that is individually correlated with decreased apoptosis. CD8+ T cells in the peritoneal cavity of TCF-1-deficient mice had decreased survival, suggesting a role for TCF-1 in promoting survival in the nonlymphoid tissues. CXCR3+ CD8+ T cells resisted apoptosis and accumulated in the lymph nodes of mice treated with FTY720, which blocks the export of lymph node cells into peripheral tissue. The peritoneal exudate cells (PEC) expressed increased amounts of CXCR3 ligands, CXCL9 and CXCL10, which may normally recruit these nonapoptotic cells from the lymph nodes. In addition, adoptive transfer of splenic CD8+ T cells into PEC or spleen environments showed that the peritoneal environment promoted survival of CD8+ T cells. Thus, intrinsic stability of T cells which are present in the nonlymphoid tissues along with preferential migration of apoptosis-resistant CD8+ T cells into peripheral sites and the availability of tissue-specific factors that enhance memory cell survival may collectively account for the tissue-dependent apoptotic differences. IMPORTANCE: Most infections are initiated at nonlymphoid tissue sites, and the presence of memory T cells in nonlymphoid tissues is critical for protective immunity in various viral infection models. Virus-specific CD8+ T cells in the nonlymphoid tissues are more resistant to apoptosis than those in lymphoid organs during the resolution and memory phase of the immune response to acute LCMV infection. Here, we investigated the mechanisms promoting stability of T cells in the nonlymphoid tissues. This increased resistance to apoptosis of virus-specific CD8+ T cells in nonlymphoid tissues was due to several factors. Nonlymphoid tissues were enriched in memory phenotype CD8+ T cells, which were intrinsically resistant to apoptosis irrespective of the tissue environment. Furthermore, apoptosis-resistant CD8+ T cells preferentially migrated into the nonlymphoid tissues, where the availability of tissue-specific factors may enhance memory cell survival. Our findings are relevant for the generation of long-lasting vaccines providing protection at peripheral infection sites.


Subject(s)
Animal Structures/immunology , Apoptosis , Arenaviridae Infections/immunology , CD8-Positive T-Lymphocytes/physiology , Lymphocytic choriomeningitis virus/immunology , T-Lymphocyte Subsets/physiology , Animal Structures/pathology , Animals , Antigens, Surface/analysis , Arenaviridae Infections/pathology , CD8-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/immunology , Cell Survival , Male , Mice, Inbred C57BL , T-Lymphocyte Subsets/chemistry , T-Lymphocyte Subsets/immunology
17.
J Immunol ; 192(12): 5881-93, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24835398

ABSTRACT

In response to acute virus infections, CD8(+) T cells differentiate to form a large population of short-lived effectors and a stable pool of long-lived memory cells. The characteristics of the CD8(+) T cell response are influenced by TCR affinity, Ag dose, and the inflammatory cytokine milieu dictated by the infection. To address the mechanism by which differences in TCR signal strength could regulate CD8(+) T cell differentiation, we investigated the transcription factor, IFN regulatory factor 4 (IRF4). We show that IRF4 is transiently upregulated to differing levels in murine CD8(+) T cells, based on the strength of TCR signaling. In turn, IRF4 controls the magnitude of the CD8(+) T cell response to acute virus infection in a dose-dependent manner. Modest differences in IRF4 expression dramatically influence the numbers of short-lived effector cells at the peak of the infection, but have no impact on the kinetics of the infection or on the rate of T cell contraction. Furthermore, the expression of key transcription factors such as T cell factor 1 and Eomesodermin are highly sensitive to graded levels of IRF4. In contrast, T-bet expression is less dependent on IRF4 levels and is influenced by the nature of the infection. These data indicate that IRF4 is a key component that translates the strength of TCR signaling into a graded response of virus-specific CD8(+) T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Proliferation , Influenza A virus/immunology , Interferon Regulatory Factors/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Orthomyxoviridae Infections/immunology , Acute Disease , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation/genetics , Influenza A virus/genetics , Interferon Regulatory Factors/genetics , Lymphocytic Choriomeningitis/genetics , Lymphocytic choriomeningitis virus/genetics , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Up-Regulation/genetics , Up-Regulation/immunology
18.
J Virol ; 88(4): 1953-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24284324

ABSTRACT

Persistent viral infections are associated with host and viral factors that impair effective antiviral immunity. Natural killer (NK) cells contribute to establishment of persistent lymphocytic choriomeningitis virus (LCMV) infection in mice through suppression of virus-specific T cell responses during the first few days of infection, but NK cell depletion during those early time points can enable severe T cell-mediated immune pathology and death of the host. Here we show that long after their peak in cytolytic activation, NK cells continue to support viral persistence at later times of infection. Delayed depletion of NK cells, 2 to 3 weeks after infection, enhanced virus-specific T cell responses and viral control. This enhancing effect of delayed NK cell depletion on antiviral immunity, in contrast to early NK cell depletion, was not associated with increased morbidity and mortality, and mice quickly regained weight after treatment. The efficacy of the depletion depended in part upon the size of the original virus inoculum, the viral load at the time of depletion, and the presence of CD4 T cells. Each of these factors is an important contributor to the degree of CD8 T cell dysfunction during viral persistence. Thus, NK cells may continuously contribute to exhaustion of virus-specific T cells during chronic infection, possibly by depleting CD4 T cells. Targeting of NK cells could thus be considered in combination with blockade of other immunosuppressive pathways, such as the interleukin-10 (IL-10) and programmed death 1 (PD-1) pathways, as a therapy to cure chronic human infections, including those with HIV or hepatitis C virus. IMPORTANCE Persistent virus infections are a major threat to global human health. The capacity of viruses, including HIV and hepatitis C virus, to overwhelm or subvert host immune responses contributes to a prolonged state of dampened antiviral immune functionality, which in turn facilitates viral persistence. Recent efforts have focused on therapeutics that can restore the effector functions of these functionally exhausted virus-specific T cells in order to expedite viral clearance. Here we establish that natural killer (NK) cells actively contribute to immune dysfunction and viral persistence at later stages of infection. This previously undescribed mechanism of immune suppression during chronic infection provides a vital clue for the design of novel therapeutic strategies targeting NK cell immunosuppressive activity in order to restore immune function and enhance viral control in chronically infected individuals.


Subject(s)
Arenaviridae Infections/immunology , CD4-Positive T-Lymphocytes/immunology , Immunity, Cellular/immunology , Killer Cells, Natural/immunology , Lymphocyte Depletion/methods , Lymphocytic choriomeningitis virus/immunology , Animals , Mice , Mice, Inbred C57BL , Statistics, Nonparametric , Time Factors , Viral Load
19.
mBio ; 4(6): e00812-13, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24194540

ABSTRACT

UNLABELLED: Many viruses induce acute T cell-independent (TI) B cell responses due to their repetitive epitopes and the induction of innate cytokines. Nevertheless, T cell help is thought necessary for the development of long-lasting antiviral antibody responses in the form of long-lived plasma cells and memory B cells. We found that T cell-deficient (T cell receptor ß and δ chain [TCRßδ] knockout [KO]) mice persistently infected with polyomavirus (PyV) had long-lasting antiviral serum IgG, and we questioned whether they could generate TI B cell memory. TCRßδ KO mice did not form germinal centers after PyV infection, lacked long-lived IgG-secreting plasma cells in bone marrow, and did not have detectable memory B cell responses. Mice deficient in CD4(+) T cells had a lower persisting virus load than TCRßδ KO mice, and these mice had short-lived antiviral IgG responses, suggesting that a high virus load is required to activate naive B cells continuously, and maintain the long-lasting serum IgG levels. Developing B cells in bone marrow encounter high levels of viral antigens, which can cross-link both their B cell receptor (BCR) and Toll-like receptors (TLRs), and this dual engagement may lead to a loss of their tolerance. Consistent with this hypothesis, antiviral serum IgG levels were greatly diminished in TCRßδ KO/MyD88(-/-) mice. We conclude that high persisting antigen levels and innate signaling can lead to the maintenance of long-lasting IgG responses even in the absence of T cell help. IMPORTANCE: Lifelong control of persistent virus infections is essential for host survival. Several members of the polyomavirus family are prevalent in humans, persisting at low levels in most people without clinical manifestations, but causing rare morbidity/mortality in the severely immune compromised. Studying the multiple mechanisms that control viral persistence in a mouse model, we previously found that murine polyomavirus (PyV) induces protective T cell-independent (TI) antiviral IgG. TI antibody (Ab) responses are usually short-lived, but T cell-deficient PyV-infected mice can live for many months. This study investigates how protective IgG is maintained under these circumstances and shows that these mice lack both forms of B cell memory, but they still have sustained antiviral IgG responses if they have high levels of persisting virus and intact MyD88-mediated pathways. These requirements may ensure life-saving protection against pathogens even in the absence of T cells, but they prevent the continuous generation of TI IgG against harmless antigens.


Subject(s)
Antibodies, Viral/blood , B-Lymphocytes/immunology , Immunoglobulin G/blood , Myeloid Differentiation Factor 88/metabolism , Polyomavirus Infections/immunology , Polyomavirus/immunology , T-Lymphocytes/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout
20.
Immunity ; 39(4): 661-75, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24120360

ABSTRACT

The transcription factor Blimp-1 regulates the overall accumulation of virus-specific CD8⁺ T cells during acute viral infections. We found that increased proliferation and survival of Blimp-1-deficient CD8⁺ T cells resulted from sustained expression of CD25 and CD27 and persistent cytokine responsiveness. Silencing of Il2ra and Cd27 reduced the Blimp-1-deficient CD8⁺ T cell response. Genome-wide chromatin immunoprecipitation (ChIP) sequencing analysis identified Il2ra and Cd27 as direct targets of Blimp-1. At the peak of the antiviral response, but not earlier, Blimp-1 recruited the histone-modifying enzymes G9a and HDAC2 to the Il2ra and Cd27 loci, thereby repressing expression of these genes. In the absence of Blimp-1, Il2ra and Cd27 exhibited enhanced histone H3 acetylation and reduced histone H3K9 trimethylation. These data elucidate a central mechanism by which Blimp-1 acts as an epigenetic regulator and enhances the numbers of short-lived effector cells while suppressing the development of memory-precursor CD8⁺ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epigenesis, Genetic/immunology , Lymphocytic Choriomeningitis/genetics , Lymphocytic choriomeningitis virus/immunology , Transcription Factors/genetics , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Disease Progression , Histone Deacetylase 2/genetics , Histone Deacetylase 2/immunology , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/immunology , Histones/genetics , Histones/immunology , Humans , Immunologic Memory , Interleukin-2 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/pathology , Lymphocytic Choriomeningitis/virology , Methylation , Mice , Mice, Transgenic , Molecular Sequence Data , Positive Regulatory Domain I-Binding Factor 1 , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Signal Transduction , Transcription Factors/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/antagonists & inhibitors , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...