Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 37(6): 1000-1010, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38769630

ABSTRACT

Electronic cigarette smoking (or vaping) is on the rise, presenting questions about the effects of secondhand exposure. The chemical composition of vape emissions was examined in the exhaled breath of eight human volunteers with the high chemical specificity of complementary online and offline techniques. Our study is the first to take multiple exhaled puff measurements from human participants and compare volatile organic compound (VOC) concentrations between two commonly used methods, proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and gas chromatography (GC). Five flavor profile groups were selected for this study, but flavor compounds were not observed as the main contributors to the PTR-ToF-MS signal. Instead, the PTR-ToF-MS mass spectra were overwhelmed by e-liquid thermal decomposition and fragmentation products, which masked other observations regarding flavorings and other potentially toxic species associated with secondhand vape exposure. Compared to the PTR-ToF-MS, GC measurements reported significantly different VOC concentrations, usually below those from PTR-ToF-MS. Consequently, PTR-ToF-MS mass spectra should be interpreted with caution when reporting quantitative results in vaping studies, such as doses of inhaled VOCs. Nevertheless, the online PTR-ToF-MS analysis can provide valuable qualitative information by comparing relative VOCs in back-to-back trials. For example, by comparing the mass spectra of exhaled air with those of direct puffs, we can conclude that harmful VOCs present in the vape emissions are largely absorbed by the participants, including large fractions of nicotine.


Subject(s)
Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Male , Adult , Breath Tests , Female , Mass Spectrometry , Vaping/adverse effects , Exhalation , Electronic Nicotine Delivery Systems , Young Adult , Chromatography, Gas
2.
Environ Sci Technol ; 55(5): 3201-3209, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33566595

ABSTRACT

A large concern with estimates of climate and health co-benefits of "clean" cookstoves from controlled emissions testing is whether results represent what actually happens in real homes during normal use. A growing body of evidence indicates that in-field emissions during daily cooking activities differ substantially from values obtained in laboratories, with correspondingly different estimates of co-benefits. We report PM2.5 emission factors from uncontrolled cooking (n = 7) and minimally controlled cooking tests (n = 51) using traditional chulha and angithi stoves in village kitchens in Haryana, India. Minimally controlled cooking tests (n = 13) in a village kitchen with mixed dung and brushwood fuels were representative of uncontrolled field tests for fine particulate matter (PM2.5), organic and elemental carbon (p > 0.5), but were substantially higher than previously published water boiling tests using dung or wood. When the fraction of nonrenewable biomass harvesting, elemental, and organic particulate emissions and modeled estimates of secondary organic aerosol (SOA) are included in 100 year global warming commitments (GWC100), the chulha had a net cooling impact using mixed fuels typical of the region. Correlation between PM2.5 emission factors and GWC (R2 = 0.99) implies these stoves are climate neutral for primary PM2.5 emissions of 8.8 ± 0.7 and 9.8 ± 0.9 g PM2.5/kg dry fuel for GWC20 and GWC100, respectively, which is close to the mean for biomass stoves in global emission inventories.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Household Articles , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Biomass , Cooking , India , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...