Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(14): 6596-6606, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36916135

ABSTRACT

Thermoelectric generators (TEGs) convert temperature differences into electrical power and are attractive among energy harvesting devices due to their autonomous and silent operation. While thermoelectric materials have undergone substantial improvements in material properties, a reliable and cost-effective fabrication method suitable for microgravity and space applications remains a challenge, particularly as commercial space flight and extended crewed space missions increase in frequency. This paper demonstrates the use of plasma-jet printing (PJP), a gravity-independent, electromagnetic field-assisted printing technology, to deposit colloidal thermoelectric nanoflakes with engineered nanopores onto flexible substrates at room temperature. We observe substantial improvements in material adhesion and flexibility with less than 2% and 11% variation in performance after 10 000 bending cycles over 25 mm and 8 mm radii of curvature, respectively, as compared to previously reported TE films. Our printed films demonstrate electrical conductivity of 2.5 × 103 S m-1 and a power factor of 70 µW m-1 K-2 at room temperature. To our knowledge, these are the first reported values of plasma-jet printed thermoelectric nanomaterial films. This advancement in plasma jet printing significantly promotes the development of nanoengineered 2D and layered materials not only for energy harvesting but also for the development of large-scale flexible electronics and sensors for both space and commercial applications.

2.
ACS Appl Mater Interfaces ; 11(28): 24933-24944, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31173687

ABSTRACT

Many promising attributes of ZnO nanoparticles (nZnO) have led to their utilization in numerous electronic devices and biomedical technologies. nZnO fabrication methods can create a variety of intrinsic defects that modulate the properties of nZnO, which can be exploited for various purposes. Here we developed a new synthesis procedure that controls certain defects in pure nZnO that are theorized to contribute to the n-type conductivity of the material. Interestingly, this procedure created defects that reduced the nanoparticle band gap to ∼3.1 eV and generated strong emissions in the violet to blue region while minimizing the defects responsible for the more commonly observed broad green emissions. Several characterization techniques including thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, Raman, photoluminescence, and inductively coupled plasma mass spectrometry were employed to verify the sample purity, assess how modifications in the synthesis procedure affect the various defects states, and understand how these alterations impact the physical properties. Since the band gap significantly decreased and a relatively narrow visible emissions band was created by these defects, we investigated utilizing these new nZnO for bioimaging applications using traditional fluorescent microscopy techniques. Although most nZnO generally require UV excitation sources to produce emissions, we demonstrate that reducing the band gap allows for a 405 nm laser to sufficiently excite the nanoparticles to detect their emissions during live-cell imaging experiments using a confocal microscope. This work lays the foundation for the use of these new nZnO in various bioimaging applications and enables researchers to investigate the interactions of pure nZnO with cells through fluorescence-based imaging techniques.


Subject(s)
Nanoparticles/chemistry , Zinc Oxide , Humans , Jurkat Cells , Microscopy, Fluorescence , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
3.
Phys Chem Chem Phys ; 20(35): 22537-22546, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30140842

ABSTRACT

In this paper, ordered TiO2 nanotubes were grown on a Ti substrate via electrochemical anodization and subsequently annealed at 450 °C for 4 h under various atmospheres to create different point defects. Oxygen-deficient environments such as Ar and N2 were used to develop oxygen vacancies, while a water vapor (WV) atmosphere was used to generate titanium vacancies. Computational models by density functional theory predicted that the presence of oxygen vacancies would cause electronic conductivity to increase, while the presence of Ti vacancies could lead to decreased conductivity. The predictions were confirmed by two-point electrical conductivity measurements and Mott-Schottky analysis. Raman spectroscopy was also conducted to confirm the presence of defects. The annealed samples were then evaluated as anodes in lithium-ion batteries. The oxygen-deficient samples had an improvement in capacity by 10% and 25% for Ar- and N2-treated samples, respectively, while the WV-treated sample displayed a capacity increase of 24% compared to the stoichiometric control sample (annealed in O2). Electrochemical impedance spectroscopy studies revealed that the WV-treated sample's increased capacity was a consequence of its higher Li diffusivity. The results suggest that balanced electrical and ionic conductivity in nanostructured metal oxide anodes can be tuned through defect generation using heat treatments in various atmospheres for improved electrochemical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...