Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 62(9): 22, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34259817

ABSTRACT

Purpose: The purpose of this study was to measure the composition of the inner nuclear layer (INL) in the central and peripheral human retina as foundation data for interpreting INL function and dysfunction. Methods: Six postmortem human donor retinas (male and female, aged 31-56 years) were sectioned along the temporal horizontal meridian. Sections were processed with immunofluorescent markers and imaged using high-resolution, multichannel fluorescence microscopy. The density of horizontal, bipolar, amacrine, and Müller cells was quantified between 1 and 12 mm eccentricity with appropriate adjustments for postreceptoral spatial displacements near the fovea. Results: Cone bipolar cells dominate the INL a with density near 50,000 cells/mm2 at 1 mm eccentricity and integrated total ∼10 million cells up to 10 mm eccentricity. Outside central retina the spatial density of all cell populations falls but the neuronal makeup of the INL remains relatively constant: a decrease in the proportion of cone bipolar cells (from 52% at 1 mm to 37% at 10 mm) is balanced by an increasing proportion of rod bipolar cells (from 9% to 15%). The proportion of Müller cells near the fovea (17%) is lower than in the peripheral retina (27%). Conclusions: Despite large changes in the absolute density of INL cell populations across the retina, their proportions remain relatively constant. These data may have relevance for interpreting diagnostic signals such as the electroretinogram and optical coherence tomogram.


Subject(s)
Fovea Centralis/cytology , Retinal Bipolar Cells/cytology , Adult , Cell Count , Female , Humans , Male , Microscopy, Fluorescence , Middle Aged , Tissue Donors
2.
J Comp Neurol ; 524(1): 39-53, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26053777

ABSTRACT

Antibodies against calretinin are markers for one type of rod pathway interneuron (AⅡ amacrine cell) in the retina of some but not all mammalian species. The AⅡ cells play a crucial role in night-time (scotopic) vision and have been proposed as a target for optogenetic restoration of vision in retinal disease. In the present study we aimed to characterize the AⅡ cells in human retina. Postmortem human donor eyes were obtained with ethical approval and processed for calretinin immunofluorescence. Calretinin-positive somas in the inner nuclear and the ganglion cell layer were filled with the lipophilic dye DiI. The large majority (over 80%) of calretinin-immunoreactive cells is located in the inner nuclear layer, is immunopositive for glycine transporter 1, and shows the typical morphology of AⅡ amacrine cells. In addition, a small proportion of calretinin-positive cells in the inner nuclear layer and in the ganglion cell layer is glutamic acid decarboxylase-positive and shows the morphology of widefield amacrine cells (stellate, semilunar, and thorny amacrine cells). About half of the calretinin cells in the ganglion cell layer are bistratified ganglion cells resembling the small bistratified (presumed blue-ON/yellow-OFF) and the G17 ganglion cell previously described in primates. We conclude that in human retina, antibodies against calretinin can be used to identify AⅡ amacrine cells in the inner nuclear layer as well as widefield amacrine and small bistratified ganglion cells in the ganglion cell layer.


Subject(s)
Amacrine Cells/cytology , Amacrine Cells/metabolism , Calbindin 2/metabolism , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Adult , Antibodies/metabolism , Calbindin 2/immunology , Carbocyanines , Female , Fluorescent Antibody Technique/methods , Fluorescent Dyes , Humans , Male , Microscopy, Confocal , Middle Aged , Photomicrography
3.
J Comp Neurol ; 523(2): 313-34, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25262625

ABSTRACT

About 15 parallel ganglion cell pathways transmit visual signals to the brain, but the interneuron (bipolar and amacrine) populations providing input to ganglion cells remain poorly understood in primate retina. We carried out a quantitative analysis of the inner nuclear layer in the retina of the marmoset (Callithrix jacchus). Vertical Vibratome sections along the horizontal meridian were processed with immunohistochemical markers. Image stacks were taken with a confocal microscope, and densities of cell populations were determined. The density of flat midget bipolar cells fell from 15,746 cells/mm(2) at 1 mm (8 deg) to 7,827 cells/mm(2) at 3 mm (25 deg). The rod bipolar cell density fell from 8,640 cells/mm(2) at 1 mm to 4,278 cells/mm(2) at 3 mm, but the ratio of the two bipolar cell types did not change with eccentricity. The amacrine cell density ranged from 30,000 cells/mm(2) at 8 deg to less than 15,000 cells/mm(2) at 25 deg, but throughout the retina, the ratio of glycinergic to γ-aminobutyric acid (GABA)ergic to amacrine cells remained relatively constant. The fractions of rod bipolar, cone bipolar, amacrine, Müller, and horizontal cells of all cells in the inner nuclear layer were comparable in central and peripheral retina. Marmosets had lower proportions of midget bipolar and rod bipolar in comparison with macaque. These differences were correlated with differences in rod and cone densities between the two species and did not reflect fundamental differences in the wiring between the two species.


Subject(s)
Amacrine Cells/cytology , Callithrix/anatomy & histology , Retina/cytology , Retinal Bipolar Cells/cytology , Amacrine Cells/metabolism , Animals , Callithrix/metabolism , Cell Count , Glycine/metabolism , Immunohistochemistry , Male , Retina/metabolism , Retinal Bipolar Cells/metabolism , Species Specificity , gamma-Aminobutyric Acid/metabolism
4.
J Comp Neurol ; 522(2): 435-55, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-23852983

ABSTRACT

The retina contains at least 30 different types of amacrine cells but not many are well characterized. In the present study the calcium-binding protein secretagogin was localized in a population of regular and displaced amacrine cells in the retina of the common marmoset Callithrix jacchus. Irrespective of their soma location, the dendrites of secretagogin amacrine cells occupy strata 2, 3, and 4 of the inner plexiform layer, between the two bands formed by cholinergic amacrine cells. Segretagogin amacrine cells are also immunopositive to antibodies against glutamic acid decarboxylase, suggesting that they use γ-aminobutyric acid (GABA) as their neurotransmitter. The spatial density of secretagogin amacrine cells decreases from a peak of about 400 cells/mm(2) near 1 mm eccentricity to less than 100 cells/mm(2) in peripheral retina; these densities account for about 1% of amacrine cells in the inner nuclear layer and for up to 27% of displaced amacrine cells. The cell bodies form a regular mosaic, suggesting that they constitute a single amacrine cell population. Secretagogin cells have varicose dendrites, which are decorated with small spines. Intracellular injection of DiI into secretagogin cells revealed an average dendritic field diameter of 170 µm and an average coverage factor of 3.2. In summary, secretagogin cells in marmoset retina are medium-field amacrine cells that share their stratification pattern with narrow-field amacrine cells and their neurotransmitter with wide-field amacrine cells. They may mediate spatial inhibition spanning the centralmost (on and off) bands of the inner plexiform layer.


Subject(s)
Amacrine Cells/cytology , Amacrine Cells/metabolism , Secretagogins/metabolism , Animals , Callithrix , Female , Immunohistochemistry , Male , Retina/cytology , Retina/metabolism , Secretagogins/analysis
5.
J Comp Neurol ; 520(17): 3962-81, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22592841

ABSTRACT

Inhibitory glycine receptors (GlyRs) are composed of homologous α- (α1-4) and ß-subunits. The ß-subunits (GlyRß) interact via their large cytosolic loops with the postsynaptic scaffolding protein gephyrin and are therefore considered essential for synaptic localization. In situ hybridization studies indicate a widespread distribution of GlyRß transcripts throughout the mammalian central nervous system (CNS), whereas GlyRα mRNAs and proteins display more restricted expression patterns. Here we report the generation of a monoclonal antibody that specifically recognizes rodent GlyRß (mAb-GlyRß) and does not exhibit crossreactivity with any of the GlyRα1-4 subunits. Immunostaining with this antibody revealed high densities of punctate GlyRß immunoreactivity at inhibitory synapses in mouse spinal cord, brainstem, midbrain, and olfactory bulb but not in the neocortex, cerebellum, or hippocampus. This contrasts the abundance of GlyRß transcripts in all major regions of the rodent brain and suggests that GlyRß protein levels are regulated posttranscriptionally. When mAb-GlyRß was used in double-labeling experiments with GlyRα1-, α2-, α3-, or α4-specific antibodies to examine the colocalization of GlyRß with these GlyR subunits in the mouse retina, >90% of the GlyRα1-3 clusters detected were found to be GlyRß-immunoreactive. A subset (about 50%) of the GlyRα4 puncta in the inner plexiform layer, however, was found to lack GlyRß and gephyrin immunostaining. These GlyRα4-only clusters were apposed to bassoon immunoreactivity and hence synaptically localized. Their existence points to a gephyrin-independent synaptic localization mechanism for a minor subset of GlyRs.


Subject(s)
Antibodies, Monoclonal , Brain Chemistry , Brain/metabolism , Receptors, Glycine/analysis , Spinal Cord/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Rats , Receptors, Glycine/biosynthesis , Spinal Cord/chemistry , Synapses/chemistry , Synapses/metabolism
6.
Mol Cell Neurosci ; 44(3): 201-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20206270

ABSTRACT

The scaffolding protein gephyrin is essential for the clustering of glycine and GABA(A) receptors (GABA(A)Rs) at inhibitory synapses. Here, we provide evidence that the size of the postsynaptic gephyrin scaffold is controlled by dephosphorylation reactions. Treatment of cultured hippocampal neurons with the protein phosphatase inhibitors calyculin A and okadaic acid reduced the size of postsynaptic gephyrin clusters and increased cytoplasmic gephyrin staining. Protein phosphatase 1 (PP1) was found to colocalize with gephyrin at selected postsynaptic sites and to interact with gephyrin in transfected cells and brain extracts. Alanine or glutamate substitution of the two established serine/threonine phosphorylation sites in gephyrin failed to affect its clustering at inhibitory synapses and its ability to recruit gamma2 subunit containing GABA(A)Rs. Our data are consistent with the postsynaptic gephyrin scaffold acting as a platform for PP1, which regulates gephyrin cluster size by dephosphorylation of gephyrin- or cytoskeleton-associated proteins.


Subject(s)
Carrier Proteins/metabolism , Membrane Proteins/metabolism , Protein Phosphatase 1/metabolism , Synapses/metabolism , Animals , Carrier Proteins/genetics , Cells, Cultured , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Enzyme Inhibitors/pharmacology , Hippocampus/cytology , Humans , Marine Toxins , Membrane Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Neurons/ultrastructure , Okadaic Acid/pharmacology , Oxazoles/pharmacology , Protein Phosphatase 1/antagonists & inhibitors , Rats , Receptors, GABA/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Synapses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...