Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 414(6860): 191-5, 2001 Nov 08.
Article in English | MEDLINE | ID: mdl-11700554

ABSTRACT

Although many enzymes can readily and selectively use oxygen in water-the most familiar and attractive of all oxidants and solvents, respectively-the design of synthetic catalysts for selective water-based oxidation processes utilizing molecular oxygen remains a daunting task. Particularly problematic is the fact that oxidation of substrates by O2 involves radical chemistry, which is intrinsically non-selective and difficult to control. In addition, metallo-organic catalysts are inherently susceptible to degradation by oxygen-based radicals, while their transition-metal-ion active sites often react with water to give insoluble, and thus inactive, oxides or hydroxides. Furthermore, pH control is often required to avoid acid or base degradation of organic substrates or products. Unlike metallo-organic catalysts, polyoxometalate anions are oxidatively stable and are reversible oxidants for use with O2 (refs 8,9,10). Here we show how thermodynamically controlled self-assembly of an equilibrated ensemble of polyoxometalates, with the heteropolytungstate anion [AIVVW11O40]6- as its main component, imparts both stability in water and internal pH-management. Designed to operate at near-neutral pH, this system facilitates a two-step O2-based process for the selective delignification of wood (lignocellulose) fibres. By directly monitoring the central Al atom, we show that equilibration reactions typical of polyoxometalate anions keep the pH of the system near 7 during both process steps.

2.
Genesis ; 26(1): 55-66, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10660673

ABSTRACT

The Drosophila homeobox gene tinman plays a critical role in subdividing the early mesoderm. In particular, tinman is absolutely required for formation of the heart and visceral mesoderm. tinman expression is initiated throughout the mesoderm of the trunk region under the control of the bHLH transcription factor encoded by the twist gene, a determinant of all mesoderm. Later, tinman expression is restricted to the dorsal portion of the mesoderm, a process that is directed by decapentaplegic (dpp) whose product (a TGF-beta-related protein) is secreted by the overlaying ectoderm. Further restriction of tinman expression to the cardiac progenitors, in which it will persist throughout development, involves the secreted segmentation gene product encoded by wingless (wg, a Drosophila Wnt gene). Here, we show that strong early expression depends on the synergistic action of an enhancer element at the 5' end of the gene in conjunction with an element in the first intron. Moreover, two distinct enhancer regions are responsible for tinman expression in the heart: one region confers expression in the heart-tube-associated pericardial cells, the other element drives expression in the contractile, myocardial cells. The latter element contains two CREB consensus binding sites that are essential for cardiac-specific expression. genesis 26:55-66, 2000.


Subject(s)
Cyclic AMP Response Element-Binding Protein/physiology , Drosophila Proteins , Drosophila melanogaster/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Insect Proteins/physiology , Mesoderm/physiology , Repressor Proteins/physiology , Trans-Activators/physiology , Animals , Animals, Genetically Modified , Binding Sites , Blastoderm/physiology , Consensus Sequence , Drosophila melanogaster/embryology , Genes, Homeobox , Heart/embryology , Insect Proteins/genetics , Proto-Oncogene Proteins/physiology , Repressor Proteins/genetics , Trans-Activators/genetics , Viscera/embryology , Wnt1 Protein
3.
Inorg Chem ; 39(7): 1501-13, 2000 Apr 03.
Article in English | MEDLINE | ID: mdl-12526456

ABSTRACT

Controlled potential electrolysis (CPE) procedures are described that provide access to complexes with a [Mn4(mu 3-O)3(mu 3-O2CR)]6+ core (3MnIII,MnIV) and a trigonal pyramidal metal topology, starting from species containing the [Mn4(mu 3-O)2]8+ core (4MnIII). [Mn4O2(O2CMe)6(py)2(dbm)2] (6): triclinic, P1, a = 10.868(3) A, b = 13.864(3) A, c = 10.625(3) A, alpha = 108.62(1) degrees, beta = 118.98(1) degrees, gamma = 89.34(2) degrees, V = 1307 A3, Z = 1, T = -131 degrees C, R (Rw) = 3.24 (3.70)%. [Mn4O2(O2CPh)6(py)(dbm)2] (8): monoclinic, P2(1)/c, a = 14.743(6) A, b = 15.536(8) A, c = 30.006(13) A, beta = 102.79(1) degrees, V = 6702 A3, Z = 4, T = -155 degrees C, R (Rw) = 4.32 (4.44)%. Both 6 and 8 contain a [Mn4O2]8+ core; 8 only has one py group, the fourth MnIII site being five-coordinate. (NBun4)[Mn4O2(O2CPh)7(dbm)2] (10) is available from two related procedures. CPE of 10 at 0.65 V vs ferocene in MeCN leads to precipitation of [Mn4O3(O2CPh)4(dbm)3] (11); similarly, CPE of 6 at 0.84 V in MeCN/CH2Cl2 (3:1 v/v) gives [Mn4O3(O2CMe)4(dbm)3] (12). Complex 11: monoclinic, P2(1)/n, a = 15.161(3) A, b = 21.577(4) A, c = 22.683(5) A, beta = 108.04(3) degrees, V = 7056 A3, Z = 4, T = -100 degrees C, R (wR2) = 8.63 (21.80)%. Complex 12: monoclinic, P2(1)/n, a = 13.549(2) A, b = 22.338(4) A, c = 16.618(2) A, beta = 103.74(1) degrees, V = 4885 A3, Z = 4, T = -171 degrees C, R (Rw) = 4.63 (4.45)%. Both 11 and 12 contain a [Mn4(mu 3-O)3(mu-O2CR)] core with a Mn4 trigonal pyramid (MnIV at the apex) and the RCO2- bridging the MnIII3 base. However, in 11, the carboxylate is eta 2,mu 3 with one O atom terminal to one MnIII and the other O atom bridging the other two MnIII ions, whereas in 12 the carboxylate is eta 1,mu 3, a single O atom bridging three MnIII ions. Variable-temperature, solid-state magnetic susceptibility studies on 11 and 12 show that, for both complexes, there are antiferromagnetic exchange interactions between MnIII/MnIV pairs, and ferromagnetic interactions between MnIII/MnIII pairs. In both cases, the resultant ground states of the complex is S = 9/2, confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.50-50 kG temperature and field ranges, respectively.


Subject(s)
Carboxylic Acids/chemistry , Manganese Compounds/chemistry , Manganese Compounds/chemical synthesis , Manganese/chemistry , Nitrates/chemistry , Chemical Phenomena , Chemistry, Inorganic/methods , Chemistry, Physical , Electrolysis , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Conformation , Molecular Structure , Oxidation-Reduction , Temperature , Water/chemistry
4.
Genetics ; 151(3): 1081-91, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10049924

ABSTRACT

Introgression of homeotic mutations into wild-type genetic backgrounds results in a wide variety of phenotypes and implies that major effect modifiers of extreme phenotypes are not uncommon in natural populations of Drosophila. A composite interval mapping procedure was used to demonstrate that one major effect locus accounts for three-quarters of the variance for haltere to wing margin transformation in Ultrabithorax flies, yet has no obvious effect on wild-type development. Several other genetic backgrounds result in enlargement of the haltere significantly beyond the normal range of haploinsufficient phenotypes, suggesting genetic variation in cofactors that mediate homeotic protein function. Introgression of Antennapedia produces lines with heritable phenotypes ranging from almost complete suppression to perfect antennal leg formation, as well as transformations that are restricted to either the distal or proximal portion of the appendage. It is argued that the existence of "potential" variance, which is genetic variation whose effects are not observable in wild-type individuals, is a prerequisite for the uncoupling of genetic from phenotypic divergence.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins , Drosophila melanogaster/genetics , Genes, Homeobox/physiology , Homeodomain Proteins/genetics , Nuclear Proteins , Transcription Factors , Analysis of Variance , Animals , Antennapedia Homeodomain Protein , Crosses, Genetic , DNA Primers , Electrophoresis, Polyacrylamide Gel , Female , Genetic Variation , Genotype , Insect Proteins , Male , Microsatellite Repeats , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...