Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6506, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845224

ABSTRACT

Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.


Subject(s)
Acute Lung Injury , Lung Injury , Radiation Injuries , Animals , Humans , Lung Injury/etiology , Lung/radiation effects , Gamma Rays/adverse effects , Lab-On-A-Chip Devices
3.
ACS Synth Biol ; 10(12): 3264-3277, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34851109

ABSTRACT

Agricultural productivity relies on synthetic nitrogen fertilizers, yet half of that reactive nitrogen is lost to the environment. There is an urgent need for alternative nitrogen solutions to reduce the water pollution, ozone depletion, atmospheric particulate formation, and global greenhouse gas emissions associated with synthetic nitrogen fertilizer use. One such solution is biological nitrogen fixation (BNF), a component of the complex natural nitrogen cycle. BNF application to commercial agriculture is currently limited by fertilizer use and plant type. This paper describes the identification, development, and deployment of the first microbial product optimized using synthetic biology tools to enable BNF for corn (Zea mays) in fertilized fields, demonstrating the successful, safe commercialization of root-associated diazotrophs and realizing the potential of BNF to replace and reduce synthetic nitrogen fertilizer use in production agriculture. Derived from a wild nitrogen-fixing microbe isolated from agricultural soils, Klebsiella variicola 137-1036 ("Kv137-1036") retains the capacity of the parent strain to colonize corn roots while increasing nitrogen fixation activity 122-fold in nitrogen-rich environments. This technical milestone was then commercialized in less than half of the time of a traditional biological product, with robust biosafety evaluations and product formulations contributing to consumer confidence and ease of use. Tested in multi-year, multi-site field trial experiments throughout the U.S. Corn Belt, fields grown with Kv137-1036 exhibited both higher yields (0.35 ± 0.092 t/ha ± SE or 5.2 ± 1.4 bushels/acre ± SE) and reduced within-field yield variance by 25% in 2018 and 8% in 2019 compared to fields fertilized with synthetic nitrogen fertilizers alone. These results demonstrate the capacity of a broad-acre BNF product to fix nitrogen for corn in field conditions with reliable agronomic benefits.


Subject(s)
Edible Grain , Nitrogen Fixation , Agriculture , Crops, Agricultural , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen
4.
Biomacromolecules ; 22(6): 2582-2594, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34060817

ABSTRACT

Thromboembolic conditions are a leading cause of death worldwide, and deep vein thrombosis (DVT), or occlusive venous clot formation, is a critical and rising problem that contributes to damage of vital organs, long-term complications, and life-threatening conditions such as pulmonary embolism. Early diagnosis and treatment are correlated to better prognosis. However, current technologies in these areas, such as ultrasonography for diagnostics and anticoagulants for treatment, are limited in terms of their accuracy and therapeutic windows. In this work, we investigated targeting myeloid related protein 14 (MRP-14, also known as S100A9) using plant virus-based nanoparticle carriers as a means to achieve tissue specificity aiding prognosis and therapeutic intervention. We used a combinatorial peptide library screen to identify peptide ligands that bind MRP-14. Candidates were selected and formulated as nanoparticles by using cowpea mosaic virus (CPMV) and tobacco mosaic virus (TMV). Intravascular delivery of our MRP-14-targeted nanoparticles in a murine model of DVT resulted in enhanced accumulation in the thrombi and reduced thrombus size, suggesting application of nanoparticles for molecular targeting of MRP-14 could be a promising direction for improving DVT diagnostics, therapeutics, and therefore prognosis.


Subject(s)
Nanoparticles , Plant Viruses , Pulmonary Embolism , Thrombosis , Venous Thrombosis , Animals , Anticoagulants , Calgranulin B , Mice , Venous Thrombosis/drug therapy
5.
Crohns Colitis 360 ; 3(3): otab042, 2021 Jul.
Article in English | MEDLINE | ID: mdl-36776656

ABSTRACT

Background: There is controversy about the proactive clinical application of therapeutic drug monitoring (TDM) of biologic drugs in Crohn's disease (CD). One way to practically assess this is to examine how TDM influences management decisions. We examined how knowledge of proactive and reactive antitumor necrosis factor (anti-TNF) drug levels changes management in a variety of clinical scenarios. Methods: In this retrospective cohort study, all adults with CD having trough level infliximab or adalimumab measurements at Liverpool Hospital between June 2013 and July 2016 were included. Demographics, indications for testing, anti-TNF drug levels, and treatment details were collected along with subsequent management decisions. The decision made by the treating clinician after receiving the drug level was compared to a consensus decision from a panel of 3 gastroenterologists based on the clinical, laboratory, imaging, and/or endoscopic results without the drug level. When these 2 decisions were discrepant, the anti-TNF drug level was deemed to have changed management. Results: One hundred and eighty-seven trough levels of infliximab or adalimumab from 108 patients were analyzed. Overall, assessment of anti-TNF levels affected management in 46.9% of the instances. Knowledge of the drug level was also more likely to result in management change when the test was performed for reactive TDM compared to proactive TDM (63% vs 36%, P = .001). Conclusions: The addition of TDM of anti-TNF agents to routine investigations alters management decisions in adult CD patients on anti-TNF therapy in both proactive and reactive settings.

6.
APL Bioeng ; 3(4): 046103, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31803860

ABSTRACT

Enhanced vascular permeability in the lungs can lead to pulmonary edema, impaired gas exchange, and ultimately respiratory failure. While oxygen delivery, mechanical ventilation, and pressure-reducing medications help alleviate these symptoms, they do not treat the underlying disease. Mechanical activation of transient receptor potential vanilloid 4 (TRPV4) ion channels contributes to the development of pulmonary vascular disease, and overexpression of the high homology (HH) domain of the TRPV4-associated transmembrane protein CD98 has been shown to inhibit this pathway. Here, we describe the development of an adeno-associated virus (AAV) vector encoding the CD98 HH domain in which the AAV serotypes and promoters have been optimized for efficient and specific delivery to pulmonary cells. AAV-mediated gene delivery of the CD98 HH domain inhibited TRPV4 mechanotransduction in a specific manner and protected against pulmonary vascular leakage in a human lung Alveolus-on-a-Chip model. As AAV has been used clinically to deliver other gene therapies, these data raise the possibility of using this type of targeted approach to develop mechanotherapeutics that target the TRPV4 pathway for treatment of pulmonary edema in the future.

7.
Exp Biol Med (Maywood) ; 242(14): 1405-1411, 2017 08.
Article in English | MEDLINE | ID: mdl-28675044

ABSTRACT

The first-line treatment for non-Hodgkin's lymphoma is chemotherapy. While generally well tolerated, off-target effects and chemotherapy-associated complications are still of concern. To overcome the challenges associated with systemic chemotherapy, we developed a biology-inspired, nanoparticle drug delivery system (nanoDDS) making use of the nucleoprotein components of the tobacco mosaic virus (TMV). Virus-based nanoparticles, including the high-aspect ratio soft nanorods formed by TMV, are growing in popularity as nanoDDS due to their simple genetic and chemical engineerability, size and shape tunability, and biocompatibility. In this study, we used bioconjugation to modify TMV as a multivalent carrier for delivery of the antimitotic drug valine-citrulline monomethyl auristatin E (vcMMAE) targeting non-Hodgkin's lymphoma. We demonstrate successful synthesis of the TMV-vcMMAE; data indicate that the TMV-vcMMAE particles remained structurally sound with all of the 2130 identical TMV coat proteins modified to carry the therapeutic payload vcMMAE. Cell uptake using Karpas 299 cells was confirmed with TMV particles trafficking to the endolysosomal compartment, likely allowing for protease-mediated cleavage of the valine-citrulline linker for the release of the active monomethyl auristatin E component. Indeed, effective cell killing of non-Hodgkin's lymphoma in vitro was demonstrated; TMV-vcMMAE was shown to exhibit an IC50 of ∼250 nM. This study contributes to the development of viral nanoDDS. Impact statement Due to side effects associated with systemic chemotherapy, there is an urgent need for the development of novel drug delivery systems. We focus on the high-aspect ratio nanotubes formed by tobacco mosaic virus (TMV) to deliver antimitotic drugs targeted to non-Hodgkin's lymphoma. Many synthetic and biologic nanocarriers are in the development pipeline; the majority of systems are spherical in shape. This may not be optimal, because high-aspect ratio filaments exhibit enhanced tumor homing, increased target cell interactions and decreased immune cell uptake, and therefore have favorable properties for drug delivery compared to their spherical counterparts. Nevertheless, the synthesis of high-aspect ratio materials at the nanoscale remains challenging; therefore, we turned toward the nucleoprotein components of TMV as a biologic nanodrug delivery system. This work presents groundwork for the development of plant virus-based vehicles for use in cancer treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/administration & dosage , Drug Delivery Systems , Nanoparticles/administration & dosage , Oligopeptides/administration & dosage , Tobacco Mosaic Virus/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line , Cell Survival , Endocytosis , Humans , Lymphoma, Non-Hodgkin/therapy , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology
8.
Nanoscale ; 9(4): 1580-1590, 2017 Jan 26.
Article in English | MEDLINE | ID: mdl-28070572

ABSTRACT

As nature's choice in designing complex architectures, the bottom-up assembly of nanoscale building blocks offers unique solutions in achieving more complex and smaller morphologies with wide-ranging applications in medicine, energy, and materials science as compared to top-down manufacturing. In this work, we employ charged tobacco mosaic virus (TMV-wt and TMV-lys) nanoparticles in constructing multilayered fibrous networks via electrostatic layer-by-layer (LbL) deposition. In neutral aqueous media, TMV-wt assumes an anionic surface charge. TMV-wt was paired with a genetically engineered TMV-lys variant that displays a corona of lysine side chains on its solvent-exposed surface. The electrostatic interaction between TMV-wt and TMV-lys nanoparticles became the driving force in the highly controlled buildup of the multilayer TMV constructs. Since the resulting morphology closely resembles the 3-dimensional fibrous network of an extracellular matrix (ECM), the capability of the TMV assemblies to support the adhesion of NIH-3T3 fibroblast cells was investigated, demonstrating potential utility in regenerative medicine. Lastly, the layer-by-layer deposition was extended to release the TMV scaffolds as free-standing biomembranes. To demonstrate potential application in drug delivery or vaccine technology, cargo-functionalized TMV biofilms were programmed.


Subject(s)
Biofilms , Nanoparticles , Tobacco Mosaic Virus , Animals , Cell Adhesion , Mice , NIH 3T3 Cells , Quartz Crystal Microbalance Techniques , Regenerative Medicine , Static Electricity , Tissue Scaffolds
9.
Biomacromolecules ; 18(1): 103-112, 2017 01 09.
Article in English | MEDLINE | ID: mdl-27992176

ABSTRACT

Improved imaging of cancerous tissue has the potential to aid prognosis and improve patient outcome through longitudinal imaging of treatment response and disease progression. While nuclear imaging has made headway in cancer imaging, fluorinated tracers that enable magnetic resonance imaging (19F MRI) hold promise, particularly for repeated imaging sessions because nonionizing radiation is used. Fluorine MRI detects molecular signatures by imaging a fluorinated tracer and takes advantage of the spatial and anatomical resolution afforded by MRI. This manuscript describes a fluorous polymeric nanoparticle that is capable of 19F MR imaging and fluorescent tracking for in vitro and in vivo monitoring of immune cells and cancerous tissue. The fluorous particle is derived from low-molecular-weight amphiphilic copolymers that self-assemble into micelles with a hydrodynamic diameter of 260 nm. The polymer is MR-active at concentrations as low as 2.1 mM in phantom imaging studies. The fluorinated particle demonstrated rapid uptake into immune cells for potential cell-tracking or delineation of the tumor microenvironment and showed negligible toxicity. Systemic administration indicates significant uptake into two tumor types, triple-negative breast cancer and ovarian cancer, with little accumulation in off-target tissue. These results indicate a robust platform imaging agent capable of immune cell tracking and systemic disease monitoring with exceptional uptake of the nanoparticle in multiple cancer models.


Subject(s)
Fluorine-19 Magnetic Resonance Imaging/methods , Macrophages/cytology , Nanoparticles/chemistry , Optical Imaging/methods , Ovarian Neoplasms/diagnostic imaging , Polymers/chemistry , Triple Negative Breast Neoplasms/diagnostic imaging , Cells, Cultured , Female , Humans , Xenograft Model Antitumor Assays
10.
Methods Mol Biol ; 1473: 23-31, 2016.
Article in English | MEDLINE | ID: mdl-27518620

ABSTRACT

The hypoxia-inducible factor 1 (HIF-1) is a transcriptional factor involved in the regulation of oxygen within cellular environments. In hypoxic tissues or those with inadequate oxygen concentrations, activation of the HIF-1 transcription factor allows for subsequent activation of target gene expression implicated in cell survival. As a result, cells proliferate through formation of new blood vessels and expansion of vascular systems, providing necessary nourishment needed of cells. HIF-1 is also involved in the complex pathophysiology associated with cancer cells. Solid tumors are able to thrive in hypoxic environments by overactivating these target genes in order to grow and metastasize. Therefore, it is of high importance to identify modulators of the HIF-1 signaling pathway for possible development of anticancer drugs and to better understand how environmental chemicals cause cancer. Using a quantitative high-throughput screening (qHTS) approach, we are able to screen large chemical libraries to profile potential small molecule modulators of the HIF-1 signaling pathway in a 1536-well format. This chapter describes two orthogonal cell based assays; one utilizing a ß-lactamase reporter gene incorporated into human ME-180 cervical cancer cells, and the other using a NanoLuc luciferase reporter system in human HCT116 colon cancer cells. Cell viability assays for each cell line are also conducted respectively. The data from this screening platform can be used as a gateway to study mode of action (MOA) of selected compounds and drug classes.


Subject(s)
High-Throughput Screening Assays , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Luciferases/genetics , Small Molecule Libraries/pharmacology , beta-Lactamases/genetics , Cell Hypoxia , Cell Line, Tumor , Cell Survival/drug effects , Cobalt/pharmacology , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , Genes, Reporter , HCT116 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Luciferases/metabolism , Signal Transduction , Topotecan/pharmacology , beta-Lactamases/metabolism
11.
Methods Mol Biol ; 1473: 43-53, 2016.
Article in English | MEDLINE | ID: mdl-27518622

ABSTRACT

The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations.


Subject(s)
High-Throughput Screening Assays , Receptors, Cytoplasmic and Nuclear/genetics , Small Molecule Libraries/toxicity , Transcriptional Activation , Chenodeoxycholic Acid/pharmacology , Fluorescence Resonance Energy Transfer , Genes, Reporter , HEK293 Cells , Humans , Pregnenediones/pharmacology , Promoter Regions, Genetic , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship , beta-Lactamases/genetics , beta-Lactamases/metabolism
12.
Langmuir ; 32(24): 6185-93, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27244119

ABSTRACT

Nanostructured mesoscale materials find wide-ranging applications in medicine and energy. Top-down manufacturing schemes are limited by the smallest dimension accessible; therefore, we set out to study a bottom-up approach mimicking biological systems, which self-assemble into systems that orchestrate complex energy conversion functionalities. Inspired by nature, we turned toward protein-based nanoparticle structures formed by plant viruses, specifically the cowpea mosaic virus (CPMV). We report the formation of hierarchical CPMV nanoparticle assemblies on colloidal-patterned, conducting polymer arrays using a protocol combining colloidal lithography, electrochemical polymerization, and electrostatic adsorption. In this approach, a hexagonally close-packed array of polystyrene microspheres was assembled on a conductive electrode to function as the sacrificial colloidal template. A thin layer of conducting polypyrrole material was electrodeposited within the interstices of the colloidal microspheres and monitored in situ using electrochemical quartz crystal microbalance with dissipation (EC-QCM-D). Etching the template revealed an inverse opaline conducting polymer pattern capable of forming strong electrostatic interactions with CPMV and therefore enabling immobilization of CPMV on the surface. The CPMV-polymer films were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Furthermore, molecular probe diffusion experiments revealed selective ion transport properties as a function of the presence of the CPMV nanoparticles on the surface. Lastly, by utilizing its electromechanical behavior, the polymer/protein membrane was electrochemically released as a free-standing film, which can potentially be used for developing high surface area cargo delivery systems, stimuli-responsive plasmonic devices, and chemical and biological sensors.


Subject(s)
Comovirus , Nanoparticles , Polymers , Quartz Crystal Microbalance Techniques
13.
Chem Soc Rev ; 45(15): 4074-126, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27152673

ABSTRACT

This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.


Subject(s)
Biotechnology/methods , Nanomedicine/methods , Nanostructures/chemistry , Viruses , Agriculture/methods , Biotechnology/instrumentation , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Gene Transfer Techniques/instrumentation , Genetic Engineering/methods , Humans , Immunotherapy/instrumentation , Immunotherapy/methods , Nanomedicine/instrumentation , Nanotechnology/methods , Viruses/chemistry , Viruses/genetics
14.
Bioconjug Chem ; 27(5): 1227-35, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27077475

ABSTRACT

Photodynamic therapy (PDT) is a promising avenue for greater treatment efficacy of highly resistant and aggressive melanoma. Through photosensitizer attachment to nanoparticles, specificity of delivery can be conferred to further reduce potential side effects. While the main focus of PDT is the destruction of cancer cells, additional targeting of tumor-associated macrophages also present in the tumor microenvironment could further enhance treatment by eliminating their role in processes such as invasion, metastasis, and immunosuppression. In this study, we investigated PDT of macrophages and tumor cells through delivery using the natural noninfectious nanoparticle cowpea mosaic virus (CPMV), which has been shown to have specificity for the immunosuppressive subpopulation of macrophages and also targets cancer cells. We further explored conjugation of CPMV/dendron hybrids in order to improve the drug loading capacity of the nanocarrier. Overall, we demonstrated effective elimination of both macrophage and tumor cells at low micromolar concentrations of the photosensitizer when delivered with the CPMV bioconjugate, thereby potentially improving melanoma treatment.


Subject(s)
Comovirus/chemistry , Dendrimers/chemistry , Macrophages/metabolism , Melanoma, Experimental/pathology , Nanoparticles/chemistry , Photochemotherapy , Photosensitizing Agents/metabolism , Animals , Drug Carriers/chemistry , Mice , Photosensitizing Agents/chemistry , RAW 264.7 Cells
15.
Nanoscale ; 8(12): 6542-54, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26935414

ABSTRACT

Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-ß (TGF-ß) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.


Subject(s)
Aorta/metabolism , Atherosclerosis/drug therapy , Chlorides/chemistry , Chromium Compounds/chemistry , Comovirus , Hyperglycemia/metabolism , Myocytes, Smooth Muscle/metabolism , Atherosclerosis/therapy , Azo Compounds/chemistry , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Drug Delivery Systems , Glucose/chemistry , Humans , Lipids/chemistry , Microscopy, Electron, Transmission , Microscopy, Fluorescence , NF-kappa B/metabolism , Nanoparticles/chemistry , Proliferating Cell Nuclear Antigen/chemistry , Spectrophotometry, Ultraviolet , Transforming Growth Factor beta/metabolism
16.
Small ; 12(13): 1758-69, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26853911

ABSTRACT

Biomolecules in bodily fluids such as plasma can adsorb to the surface of nanoparticles and influence their biological properties. This phenomenon, known as the protein corona, is well established in the field of synthetic nanotechnology but has not been described in the context of plant virus nanoparticles (VNPs). The interaction between VNPs derived from Tobacco mosaic virus (TMV) and plasma proteins is investigated, and it is found that the VNP protein corona is significantly less abundant compared to the corona of synthetic particles. The formed corona is dominated by complement proteins and immunoglobulins, the binding of which can be reduced by PEGylating the VNP surface. The impact of the VNP protein corona on molecular recognition and cell targeting in the context of cancer and thrombosis is investigated. A library of functionalized TMV rods with polyethylene glycol (PEG) and peptide ligands targeting integrins or fibrin(ogen) show different dispersion properties, cellular interactions, and in vivo fates depending on the properties of the protein corona, influencing target specificity, and non-specific scavenging by macrophages. Our results provide insight into the in vivo properties of VNPs and suggest that the protein corona effect should be considered during the development of efficacious, targeted VNP formulations.


Subject(s)
Nanoparticles/chemistry , Protein Corona/chemistry , Tobacco Mosaic Virus/chemistry , Animals , Blood Proteins/chemistry , HT29 Cells , HeLa Cells , Humans , Mass Spectrometry , Mice , Nanoparticles/ultrastructure , Oligopeptides/chemistry , Polyethylene Glycols/chemistry , Tissue Distribution
17.
Adv Opt Mater ; 4(11): 1767-1772, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28649484

ABSTRACT

Surface plasmon resonance (SPR) sensors operate mainly on prism and grating coupling techniques, with spectral and angular scans being the two major interrogation schemes. Among them, the angular scan technique has several advantages including higher measurement precision owing to its higher signal-to-noise ratio. The currently available SPR sensor arrangements provide a maximum angular sensitivity of 500°-600° per RIU. Here, we report the study of grating coupled-hyperbolic metamaterial (GC-HMM) sensors with high angular sensitivity. The experimental studies show extraordinary angular sensitivities from visible to near infrared (NIR) wavelengths by exciting bulk plasmon polaritons associated with hyperbolic metamaterials, with a maximum of 7000° per RIU. This angular-scan plasmonic biosensor has been used for the detection of low molecular weight biomolecules such as biotin (244 Da) and high molecular weight macromolecules such as Cowpea mosaic virus (CPMV, 5.6 × 106 Da) at ultralow concentrations. The miniaturized sensing device can be integrated with microfluidic systems for the development of next-generation biosensors for lab-on-a-chip and point-of-care applications.

18.
ACS Biomater Sci Eng ; 2(5): 838-844, 2016 May 09.
Article in English | MEDLINE | ID: mdl-28713855

ABSTRACT

Melanoma is a highly aggressive cancer that is unresponsive to many traditional therapies. Recently, photodynamic therapy has shown promise in its treatment as an adjuvant therapy. However, conventional photosensitizers are limited by poor solubility and limited accumulation within target tissue. Here, we report the delivery of a porphyrin-based photosensitizer encapsulated within a plant viral nanoparticle. Specifically, we make use of the hollow, high aspect ratio nanotubes formed by the nucleoprotein components of tobacco mosaic virus (TMV) to encapsulate the drug for delivery and targeting of cancer cells. The cationic photosensitizer was successfully and stably loaded into the interior channel of TMV via electrostatic interactions. Cell uptake and efficacy were evaluated using a model of melanoma. The resulting TMV-photosensitizer exhibited improved cell uptake and efficacy when compared to free photosensitizer, making it a promising platform for improved therapy of melanoma.

19.
J Mater Chem B ; 3(29): 6037-6045, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26509036

ABSTRACT

Arterial and venous thrombosis are among the most common causes of death and hospitalization worldwide. Nanotechnology approaches hold great promise for molecular imaging and diagnosis as well as tissue-targeted delivery of therapeutics. In this study, we developed and investigated bioengineered nanoprobes for identifying thrombus formation; the design parameters of nanoparticle shape and surface chemistry, i.e. incorporation of fibrin-binding peptides CREKA and GPRPP, were investigated. Two nanoparticle platforms based on plant viruses were studied - icosahedral cowpea mosaic virus (CPMV) and elongated rod-shaped tobacco mosaic virus (TMV). These particles were loaded to carry contrast agents for dual-modality magnetic resonance (MR) and optical imaging, and both modalities demonstrated specificity of fibrin binding in vitro with the presence of targeting peptides. Preclinical studies in a carotid artery photochemical injury model of thrombosis confirmed thrombus homing of the nanoprobes, with the elongated TMV rods exhibiting significantly greater attachment to thrombi than icosahedral (sphere-like) CPMV. While in vitro studies confirmed fibrin-specificity conferred by the peptide ligands, in vivo studies indicated the nanoparticle shape had the greatest contribution toward thrombus targeting, with no significant contribution from either targeting ligand. These results demonstrate that nanoparticle shape plays a critical role in particle deposition at the site of vascular injury. Shaping nanotechnologies opens the door for the development of novel targeted diagnostic and therapeutic strategies (i.e., theranostics) for arterial and venous thrombosis.

20.
Cell Mol Bioeng ; 8(3): 433-444, 2015.
Article in English | MEDLINE | ID: mdl-26316894

ABSTRACT

Nanoparticles are promising platforms for the diagnosis and treatment of cancer. Diverse classes and shapes of materials have been investigated to establish design principles that achieve the effective partitioning of medical cargos between tumors and healthy tissues. Molecular targeting strategies combined with specific nanoparticle shapes confer tissue-specificity on the carriers, allowing the cell-specific delivery of cargos. We recently developed a filamentous platform technology in which the plant virus Potato virus X (PVX) was used as a scaffold. These particles are flexible 515 × 13 nm filaments that encourage passive tumor homing. Here we sought to advance the PVX platform by including a molecular targeting strategy based on cyclic RGD peptides, which specifically bind to integrins upregulated on tumor cells, neovasculature, and metastatic sites. Although the RGD-targeted filaments outperformed the PEGylated stealth filaments in vitro, enhanced tumor cell targeting did not translate into improved tumor homing in vivo in mouse tumor models. The RGD-PVX and PEG-PVX filaments showed contrasting biodistribution profiles. Both formulations were cleared by the liver and spleen, but only the stealth filaments accumulated in tumors, whereas the RGD-targeted filaments were sequestered in the lungs. These results provide insight into the design principles for virus-based nanoparticles that promote the delivery of medical cargos to the appropriate cell types.

SELECTION OF CITATIONS
SEARCH DETAIL
...