Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
J Environ Radioact ; 251-252: 106978, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35932538

ABSTRACT

Quantitative assessment of soil erosion and deposition rates using fallout radionuclides (FRNs), including Beryllium-7 (7Be), requires establishment of a reliable reference inventory i.e. the inventory of a non-eroding point. Little information, however, is currently available on the microscale spatial variability of 7Be inventory within reference sites. This is important information to inform sample design and replication, and in addition, to evaluate the uncertainty of derived soil redistribution data. In this study, soil samples were taken systematically at grid points on a 5 m × 12 m experimental reference plot with a bare soil surface, at two sampling occasions (2019 and 2021) in southwest China. 7Be activities were measured to explore the potential variability of 7Be inventory at the microscale. To determine possible causes of 7Be inventory variation, physicochemical characteristics including organic matter content (OM), pH, cation exchange capacity (CEC) and grain size compositions were analyzed at each sample location. 7Be inventories for the two periods were estimated at 211.1 ± 20.0 and 456.1 ± 43.8 Bq m-2 (mean ± 2 SEM, n = 44), with coefficients of variation of 31.4 and 31.9% for the 2019 and 2021 sampling cases, respectively. No significant correlations were observed between 7Be activity and the measured soil compositional properties, suggesting observed spatial variability is primarily a result of random variation due to rainsplash and other processes, although sampling and measuring processes may contribute some uncertainties. Using the traditional method, ca. 40 independent reference samples are required to estimate the mean 7Be inventory, i.e. to represent input across the site, with an allowable error of 10% at 95% confidence, while application of a bootstrap approach suggests that ca. 28 would be adequate under similar accuracy. Overall, results of this study emphasize that the simple assumption of uniform distribution of 7Be across the reference area needs detailed examination on a case-by-case basis, if this radionuclide is to be used effectively to assess patterns and rates of soil redistribution from field to hillslope scale.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Beryllium , Cesium Radioisotopes/analysis , China , Radioisotopes , Soil , Soil Pollutants, Radioactive/analysis
2.
J Environ Radioact ; 212: 106124, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31818735

ABSTRACT

This paper reports work exploring the potential for using the natural fallout radionuclide 210Pbex to date moraine soils for tracing glacier retreat. Based on the physical processes of 210Pbex deposition, decay and losses due to runoff, a210Pbex accumulation-decay model (An=I[1-λn+11-λ-b(cn+1-λn+1)c-λ] ) was developed, where An = 210Pbex inventory (Bq·m-2); I = annual inventory of 210Pbex deposition (Bq·m-2); λ = 210 Pb decay coefficient (0.969); n = time span (years); b and c = 210Pbex loss coefficients for the runoff pathway. Furthermore, 137Cs was used to identify the ages of the study sites and to support the 210Pbex model results. The model was validated with data obtained from the Hailuogou Glacier Valley, Mt. Gongga, in 2016, where nine glacier retreat moraine points were recorded from 1910 to 1990 along a retreat length of 1750 m in the valley. 210Pbex inventories increased from 3,669.6 ± 218.5 Bq·m-2 at the site where the glacier retreated in 1990 to 10,718.9 ± 167.4 Bq·m-2 in 1910. The coefficients of b = 0.6006 and c = 0.9764 were derived from the 210Pbex inventories at the nine sites with recorded glacier retreat times that were marked with special stone and terrain features. The goodness-of-fit (GOF) for the model predictions of glacier retreat times is 65.5%. The results obtained confirm that the fallout radionuclide 210Pbex has potential for dating moraine soils in other cryosphere regions throughout the world as well as for other types of records forming sedimentary landform sequences such as soils on debris flows and alluvial fans.


Subject(s)
Ice Cover , Radiation Monitoring , Lead Radioisotopes , Soil
3.
Article in English | MEDLINE | ID: mdl-30995796

ABSTRACT

The study of the variability of soil erosion in mountainous areas provides the basis for soil and water conservation work and forest ecological construction in a targeted way. In this study, Liangshan Town catchment, a typical catchment in the Hengduan Mountains region, southwest China, was selected to investigate the variation of soil erosion in different vertical zones using the 137Cs tracing technique. The mean 137Cs reference inventories varied between 573.51 and 705.54 Bq/m2, with the elevation increasing from 1600 to 2600 m. The rates of soil erosion exhibited a significant variation. Under the same land cover condition, the average annual soil erosion modulus of high-elevation forest (elevation > 2200 m) was 400.3 t/(km2·a). However, the average annual soil erosion modulus of a low-elevation sparse forest (elevation < 1600 m) was as high as 1756 t/(km2·a). The average annual soil erosion modulus of the sloping farmland, mainly distributed at elevations of 1600-2200 m, was estimated to be 2771 t/(km2·a). These results indicate that effective soil management measures need to be implemented on the cultivated sloping land in the future.


Subject(s)
Cesium Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , China , Forests , Soil
4.
Sci Total Environ ; 633: 1114-1125, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29758863

ABSTRACT

The Three Gorges Dam has significantly interrupted fluvial continuity and modified the mass transfer regime along river continuums. Flow regulation following regular dam operations drives dramatic hydrological regime shifts, which facilitates sediment dispersal in the water-level fluctuation zone over episodic inundation periods. How flow regulation modulates sediment redistribution, however, remains unclear. In this study, we depict absolute particle size composition of suspended sediment and sink sediment in the water-level fluctuation zone, and these are interpreted in the context of flow regulation controls on sediment sorting. Multiple sampling strategies were applied at different spatial and temporal scales, to overcome limitations of labour and cost input in a large-scale field study and to collect representative samples. The results revealed a longitudinal fining trend and seasonal variability in particle size composition for suspended sediment. Sink sediment collected from the water-level fluctuation zone during a single summer flood event displayed a similar longitudinal fining trend, reflecting preferential settling of coarser fractions in the backwater reaches where flow velocity declines sharply. Surface sediment demonstrated a laterally coarsening trend with increasing elevations along a slope profile. Flooding duration, frequency and timing represent key factors in determining the elevation-dependent variations in the magnitude of sedimentation and its source inputs. Relatively longer flooding duration and frequent intermediate summer floods with high suspended sediment flux are responsible for high sedimentation rates in the lower portions with distal upstream source inputs, while low sedimentation rates in the upper portions are principally associated with water impoundment and sediment produced from local bank erosion. Vertical particle size variability was observed along a sedimentary core profile, which most likely reflects seasonal differences in source supply with contrasting particle size characteristics. We conclude that absolute particle size differentiation explains flow regulation controls on sediment sorting in the water-level fluctuation zone of the Three Gorges Reservoir.

5.
Environ Sci Pollut Res Int ; 25(18): 17620-17633, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29667055

ABSTRACT

Sedimentary archives preserved in geomorphic sinks provide records of historical sediment dynamics and its related natural and anthropogenic controls. This study reinterpreted sedimentary processes in Changshou Lake of the Three Gorges Reservoir Area in China by combining a rainfall erosivity index with multiple tracing proxies, and the impacts of natural and anthropogenic drivers on sediment production were also explored. Erosive rainfalls with low frequency and large magnitude in the rainy season contribute to a substantial proportion of annual total rainfall, which thus can be used to infer erosion and sediment yield events. The sedimentary chronology was determined by comparing rainfall erosivity index with depth distribution of 137Cs and absolute particle size, which revealed annual sedimentation rates ranging from 1.1 to 2.3 cm a-1. The multi-proxy dating index and variation of sedimentation rate divided the sediment profile into three major periods. The reference period (1956-1982) displays low variability of TOC, TN, trace metal concentrations, and mean sedimentation rate. In the stressed period (1982-1998), industrial and sewerage discharge led to input and deposition of TOC, TN, and trace metals (e.g., Cd, Co, Cu, Cr, and Ni). The highest annual sediment accumulation rate of 2.3 cm a-1 may be ascribed to the 1982 big flood event. In the present period (1998-2013), increased TOC, TN and decreased trace metals in the top layers of the sediment core indicated changes in lake ecology. Fish farming promoted algal growth and primary productivity which caused eutrophication until 2004-2005. The reduced mean sedimentation rate of 1.7 cm a-1 between 1998 and 2004, and thereafter, may be attributed to soil and water conservation and reforestation policies implemented in the Longxi catchment. Human activities such as deforestation, cultural and industrial revolution, and lake eutrophication associated with fish farming since 1989, therefore led to appreciable limnological variations. Overall, the dated sedimentary profile from Changshou Lake displays high consistency with archived historical events and reflects the impact of both natural and anthropogenic controls on sediment production.


Subject(s)
Cesium Radioisotopes/chemistry , Geologic Sediments/analysis , Trace Elements/analysis , China , Eutrophication , Humans , Lakes , Rain , Soil , Trace Elements/chemistry
6.
Sci Total Environ ; 598: 319-329, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28448924

ABSTRACT

Quantifying sediment production and transfer at different spatial and temporal scales in a changing environment is critical in understanding the potential effects of climatic and anthropogenic drivers. Accordingly, estimates of soil erosion and sediment production at hillslope field, first-order small catchment (<0.25km2) and river basin scales in the Sichuan Hilly Basin of Southwestern China, generated using a variety of techniques, including fallout radionuclide tracing, runoff plot observations, core chronology dating and conventional sediment flux monitoring, were synthesized and interpreted in the context of potential climatic and human controls. Mean annual soil erosion rates ranged from 800Mg·km-2·yr-1 to 4500Mg·km-2·yr-1 on the basis of fallout radionuclide tracing and from 600Mg·km-2·yr-1 to 3300Mg·km-2·yr-1 using runoff plot monitoring on selected cultivated hillslopes. A high slope-channel sediment delivery ratio was observed, meaning that a substantial proportion of eroded sediment was delivered into downstream drainage channels. An obvious temporal trend of decreasing sediment transfer to the river channels in the first-order catchments was identified, which may be driven by change in regional precipitation regime and the implementation of multiple soil conservation and reforestation practices over recent decades.

7.
J Environ Manage ; 181: 64-73, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27315602

ABSTRACT

The Three Gorges Reservoir (TGR) in China has large water level variations, creating about 393 km(2) of drawdown area seasonally. Farming practices in drawdown area during the low water level period is common in the TGR. Field experiments on soil-air greenhouse gas (GHG) emissions in fallow grassland, peanut field and corn field in reservoir drawdown area at Lijiaba Bay of the Pengxi River, a tributary of the Yangtze River in the TGR were carried out from March through September 2011. Experimental fields in drawdown area had the same land use history. They were adjacent to each other horizontally at a narrow range of elevation i.e. 167-169 m, which assured that they had the same duration of reservoir inundation. Unflooded grassland with the same land-use history was selected as control for study. Results showed that mean value of soil CO2 emissions in drawdown area was 10.38 ± 0.97 mmol m(-2) h(-1). The corresponding CH4 fluxes and N2O fluxes were -8.61 ± 2.15 µmol m(-2) h(-1) and 3.42 ± 0.80 µmol m(-2) h(-1). Significant differences and monthly variations among land uses in treatments of drawdown area and unflooded grassland were evident. These were impacted by the change in soil physiochemical properties which were alerted by reservoir operation and farming. Particularly, N-fertilization in corn field stimulated N2O emissions from March to May. In terms of global warming potentials (GWP), corn field in drawdown area had the maximum GWP mainly due to N-fertilization. Gross GWP in peanut field in drawdown area was about 7% lower than that in fallow grassland. Compared to unflooded grassland, reservoir operation created positive net effect on GHG emissions and GWPs in drawdown area. However, selection of crop species, e.g. peanut, and best practices in farming, e.g. prohibiting N-fertilization, could potentially mitigate GWPs in drawdown area. In the net GHG emissions evaluation in the TGR, farming practices in the drawdown area shall be taken into consideration.


Subject(s)
Agriculture , Air Pollutants/chemistry , Carbon Dioxide/chemistry , Methane/chemistry , China , Environmental Monitoring , Greenhouse Effect , Humans , Rivers , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry
8.
Huan Jing Ke Xue ; 37(3): 935-41, 2016 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-27337884

ABSTRACT

In order to analyze the spatial variation characteristics of grain diameter, nutrient elements and heavy metal pollution with deposition sediment in tributaries bay of the Three Gorges Reservoir, we selected 9 typical tributaries bay, 54 deposited sediment samples were collected from the riparian zone for analyzing grain diameter distribution, capacity, organic matter, nutrient elements of TN, TP and K, heavy metal elements of Cr, Cu, Ni, Pb, and Zn. The results indicated that particle size distribution from Wujiang River in Fuling to the Modao stream in Yunyang presented a trend of fluctuation, deposited sediment at 160-165 m elevation was coarser than that at 165-175 m elevation,volume percent of sand and clay presented a moderate variation at both altitudes, while silt had small variation. Independent sample t test showed that characteristics difference between the upper and lower sediments in riparian zone was not significant. The geo-accumulation index of heavy metal pollutants in the sediment from riparian zone of the Three Gorges Reservoir tributaries bay indicated that, only Zn element in Zhenxi River, Longdong River and Long River, Pb element in the Modao Stream belonged to non-moderate pollution levels, whereas there were no pollution of all other elements in tributaries.


Subject(s)
Bays , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Rivers
9.
Appl Radiat Isot ; 69(10): 1343-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21683604

ABSTRACT

The potential for using (7)Be measurements to document soil redistribution associated with a heavy rainfall was estimated using (7)Be method on a bare purple soil plot in the Three Gorges Reservoir region of China. The results were compared with direct measurement from traditional approaches of erosion pins and runoff plots. The study shows that estimation of soil losses from (7)Be are comparable with the monitoring results provided by erosion pins and runoff plots, and are also in agreement with the existing knowledge provided by 137Cs measurements. The results obtained from this study demonstrated the potential for using (7)Be technique to quantify short-term erosion rates in these areas.


Subject(s)
Beryllium/analysis , Environmental Monitoring/methods , Geology/methods , Radioisotopes/analysis , Soil/chemistry , Water Movements , China , Rain
SELECTION OF CITATIONS
SEARCH DETAIL
...