Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 688, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026161

ABSTRACT

BACKGROUND: Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS: 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS: The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.


Subject(s)
Laccase , Multigene Family , Phaseolus , Phylogeny , Stress, Physiological , Phaseolus/genetics , Phaseolus/enzymology , Phaseolus/physiology , Laccase/genetics , Laccase/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Genes, Plant
2.
Ecotoxicol Environ Saf ; 268: 115732, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38000301

ABSTRACT

Glutathione plays a critical role in plant growth, development and response to stress. It is a major cellular antioxidant and is involved in the detoxification of xenobiotics in many organisms, including plants. However, the role of glutathione-dependent redox homeostasis and associated molecular mechanisms regulating the antioxidant system and pesticide metabolism remains unclear. In this study, endogenous glutathione levels were manipulated by pharmacological treatments with glutathione synthesis inhibitors and oxidized glutathione. The application of oxidized glutathione enriched the cellular oxidation state, reduced the activity and transcript levels of antioxidant enzymes, upregulated the expression level of nitric oxide and Ca2+ related genes and the content, and increased the residue of chlorothalonil in tomato leaves. Further experiments confirmed that glutathione-induced redox homeostasis is critical for the reduction of pesticide residues. RNA sequencing analysis revealed that miRNA156 and miRNA169 that target transcription factor SQUAMOSA-Promoter Binding Proteins (SBP) and NUCLEAR FACTOR Y (NFY) potentially participate in glutathione-mediated pesticide degradation in tomato plants. Our study provides important clues for further dissection of pesticide degradation mechanisms via miRNAs in plants.


Subject(s)
Pesticides , Solanum lycopersicum , Antioxidants/metabolism , Solanum lycopersicum/genetics , Glutathione Disulfide/metabolism , Glutathione/metabolism , Oxidation-Reduction , Pesticides/metabolism , Plants/metabolism , Homeostasis , Oxidative Stress
3.
J Control Release ; 361: 427-442, 2023 09.
Article in English | MEDLINE | ID: mdl-37487929

ABSTRACT

Due to the unique physicochemical properties, mesoporous silica nanoparticles (MONs) have been widely utilized in biomedical fields for drug delivery, gene therapy, disease diagnosis and imaging. With the extensive applications and large-scale production of MONs, the potential effects of MONs on human health are gaining increased attention. To better understand the cellular and molecular mechanisms underlying the effects of MONs on the mouse liver, we profiled the transcriptome of 63,783 single cells from mouse livers following weekly intravenous administration of MONs for 2 weeks. The results showed that the proportion of endothelial cells and CD4+ T cells was increased, whereas that of Kupffer cells was decreased, in a dose-dependent manner after MONs treatment in the mouse liver. We also observed that the proportion of inflammation-related Kupffer cell subtype and wound healing-related hepatocyte subtype were elevated, but the number of hepatocytes with detoxification characteristics was reduced after MONs treatment. The cell-cell communication network revealed that there was more crosstalk between cholangiocytes and Kupffer cells, liver capsular macrophages, hepatic stellate cells, and endothelial cells following MONs treatment. Furthermore, we identified key ligand-receptor pairs between crucial subtypes after MONs treatment that are known to promote liver fibrosis. Collectively, our study explored the effects of MONs on mouse liver at a single-cell level and provides comprehensive information on the potential hepatotoxicity of MONs.


Subject(s)
Endothelial Cells , Nanoparticles , Mice , Humans , Animals , Silicon Dioxide/chemistry , Transcriptome , Liver , Hepatocytes , Nanoparticles/chemistry
4.
Int J Biol Macromol ; 224: 533-543, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36265540

ABSTRACT

With the development of minimally invasive orthopedics, injectable materials for bone repair are attracted more attention, especially for those wound with a small external mouth and sizeable internal cavity. In this work, the hydrogel with features of thermo-responsiveness, degradability and injectability was designed and fabricated. The hydrogel, named as FHCS, is composed of Pluronic F-127 (F127) loaded with carboxymethyl chitosan/sodium alginate nanoparticles (nCS) and nanohydroxyapatite (nHA). The hydrogel FHCS was non-toxic and good hemocompatible. It can enhance the ALP activity and extracellular matrix calcification of MC3T3-E1 due to the chitosan-based nanoparticle components (nCS). Moreover, FHCS-5 (containing 5 mg/mL nCS) showed relative high expression of osteogenic genes and protein markers. Osteal regeneration was observed treated by FHCS-5 hydrogel in a critical-size rat calvarial bone defect model. CT scanning showed that the whole defect was basically covered by new bone after FHCS-5 hydrogel. The results of H&E staining and Masson's trichrome staining on histological sections further confirmed that FHCS-5 hydrogel promoted new osteal formation and maturation, which up regulated the osteogenic related genes and proteins of ALP, OCN, OPN through BMP/Smad signaling pathway. Hence, this study suggests that FHCS-5 hydrogels have a promising application for non-loading bone regeneration.


Subject(s)
Biological Products , Chitosan , Nanoparticles , Rats , Animals , Osteogenesis , Hydrogels , Alginates , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...