Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967330

ABSTRACT

By using low-temperature scanning tunneling microscopy and spectroscopy (STM/STS), we observe in-gap states induced by Andreev tunneling through a single impurity state in a low carrier density superconductor (NaAlSi). The energy-symmetric in-gap states appear when the impurity state is located within the superconducting gap. In-gap states can cross the Fermi level, and they show X-shaped spatial variation. We interpret the in-gap states as a consequence of the Andreev tunneling through the impurity state, which involves the formation or breakup of a Cooper pair. Due to the low carrier density in NaAlSi, the in-gap state is tunable by controlling the STM tip-sample distance. Under strong external magnetic fields, the impurity state shows Zeeman splitting when it is located near the Fermi level. Our findings not only demonstrate the Andreev tunneling involving single electronic state but also provide new insights for understanding the spatially dependent in-gap states in low carrier density superconductors.

2.
Phys Rev Lett ; 131(11): 116501, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37774284

ABSTRACT

Here we report a combined study of low-temperature scanning tunneling microscopy and dynamical mean-field theory on PdCrO_{2}, a delafossite metal with an antiferromagnetic order below ∼37.5 K. First, on the CrO_{2}-terminated polar surface we detect a gaplike feature both below and above the Néel temperature. The dynamical mean-field theory calculations indicate that this gap is opened due to the strong correlations of Cr-3d electrons, suggesting the hidden Mott nature of the gap. Then, we observe two kinds of Pd-terminated polar surfaces. One is a well-ordered Pd surface with the Fermi-surface-nesting-induced incommensurate charge modulation, while the other one is a reconstructed Pd surface with the individual nanoscale nonperiodic domain structures. On the well-ordered Pd surface, the interference between the incommensurate charge modulation and the atomic lattice forms the periodic moiré pattern. Our results provide important microscopic information for fully understanding the correlated electronic properties of this class of materials.

3.
Nano Lett ; 23(7): 2958-2963, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37011415

ABSTRACT

Here we use low-temperature and variable-temperature scanning tunneling microscopy to study the pnictide superconductor, Ba1-xSrxNi2As2. In the low-temperature phase (triclinic phase) of BaNi2As2, we observe the unidirectional charge density wave (CDW) with Q = 1/3 on both the Ba and NiAs surfaces. On the NiAs surface of the triclinic BaNi2As2, there are structural-modulation-induced chain-like superstructures with distinct periodicities. In the high-temperature phase (tetragonal phase) of BaNi2As2, the NiAs surface appears as the periodic 1 × 2 superstructure. Interestingly, in the triclinic phase of Ba0.5Sr0.5Ni2As2, the unidirectional CDW is suppressed on both the Ba/Sr and NiAs surfaces, and the Sr substitution stabilizes the periodic 1 × 2 superstructure on the NiAs surface, which enhance the superconductivity in Ba0.5Sr0.5Ni2As2. Our results provide important microscopic insights for the interplay among the unidirectional CDW, structural modulation, and superconductivity in this class of pnictide superconductors.

4.
Nano Lett ; 22(14): 5635-5640, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35838660

ABSTRACT

Here, we use low-temperature scanning tunneling microscopy and spectroscopy to study the polar surfaces of PdCoO2. On the CoO2-terminated polar surface, we detect the quasiparticle interference pattern originating from the Rashba-like spin-split surface states. On the well-ordered Pd-terminated polar surface, we observe a regular lattice that has a larger lattice constant than the atomic lattice of PdCoO2. In comparison with the shape of the hexagonal Fermi surface on the Pd-terminated surface, we identify this regular lattice as a fully two-dimensional incommensurate charge modulation that is driven by the Fermi surface nesting. More interestingly, we also find the moiré pattern induced by the interference between the two-dimensional incommensurate charge modulation in the Pd layer and its atomic lattice. Our results not only show a new charge modulation on the Pd surface of PdCoO2 but also pave the way for fully understanding the novel electronic properties of this material.

5.
Nat Commun ; 13(1): 2156, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35444181

ABSTRACT

Although the single-impurity Kondo physics has already been well understood, the understanding of the Kondo lattice where a dense array of local moments couples to the conduction electrons is still far from complete. The ability of creating and tuning the Kondo lattice in non-f-electron systems will be great helpful for further understanding the Kondo lattice behavior. Here we show that the Pb intercalation in the charge-density-wave-driven narrow-electronic-band system 1T-TaS2 induces a transition from the insulating gap to a sharp Kondo resonance in the scanning tunneling microscopy measurements. It results from the Kondo screening of the localized moments in the 13-site Star-of-David clusters of 1T-TaS2. As increasing the Pb concentration, the narrow electronic band derived from the localized electrons shifts away from the Fermi level and the Kondo resonance peak is gradually suppressed. Our results pave the way for creating and tuning many-body electronic states in layered narrow-electronic-band materials.

6.
Adv Mater ; 33(42): e2102813, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34477250

ABSTRACT

Superconductivity in topological kagome metals has recently received great research interests. Here, charge density wave (CDW) orders and the evolution of superconductivity under various pressures in CsV3 Sb5 single crystal with V kagome lattice are investigated. By using high-resolution scanning tunneling microscopy/spectroscopy (STM/STS), two CDW orders in CsV3 Sb5 are observed which correspond to 4a × 1a and 2a × 2a superlattices. By applying pressure, the superconducting transition temperature Tc is significantly enhanced and reaches a maximum value of 8.2 K at around 1 GPa. Accordingly, CDW state is gradually declined as increasing the pressure, which indicates the competing interplay between CDW and superconducting state in this material. The broad superconducting transitions around 0.4-0.8 GPa can be related to the strong competition relation among two CDW states and superconductivity. These results demonstrate that CsV3 Sb5 is a new platform for exploring the interplay between superconductivity and CDW in topological kagome metals.

7.
Phys Rev Lett ; 126(25): 256402, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34241511

ABSTRACT

Here we use low-temperature scanning tunneling microscopy and spectroscopy to reveal the roles of the narrow electronic band in two 1T-TaS_{2}-related materials (bulk 1T-TaS_{2} and 4H_{b}-TaS_{2}). 4H_{b}-TaS_{2} is a superconducting compound with alternating 1T-TaS_{2} and 1H-TaS_{2} layers, where the 1H-TaS_{2} layer has a weak charge density wave (CDW) pattern and reduces the CDW coupling between the adjacent 1T-TaS_{2} layers. In the 1T-TaS_{2} layer of 4H_{b}-TaS_{2}, we observe a narrow electronic band located near the Fermi level, and its spatial distribution is consistent with the tight-binding calculations for two-dimensional 1T-TaS_{2} layers. The weak electronic hybridization between the 1T-TaS_{2} and 1H-TaS_{2} layers in 4H_{b}-TaS_{2} shifts the narrow electronic band to be slightly above the Fermi level, which suppresses the electronic correlation-induced band splitting. In contrast, in bulk 1T-TaS_{2}, there is an interlayer CDW coupling-induced insulating gap. In comparison with the spatial distributions of the electronic states in bulk 1T-TaS_{2} and 4H_{b}-TaS_{2}, the insulating gap in bulk 1T-TaS_{2} results from the formation of a bonding band and an antibonding band due to the overlap of the narrow electronic bands in the dimerized 1T-TaS_{2} layers.

8.
Nano Lett ; 20(12): 8854-8860, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33170704

ABSTRACT

Water-solid interactions are crucial for many fundamental phenomena and technological processes. Here, we report a scanning tunneling microscopy study about the charge density wave (CDW) transition in 1T-TaS2 driven by a single water dipole layer. At low temperature, pristine 1T-TaS2 is a prototypical CDW compound with 13 × 13 charge order. After growing a highly ordered water adlayer, a new charge order with 3 × 3 periodicity emerges on water-covered 1T-TaS2. After water desorption, the entire 1T-TaS2 surface appears as localized 13 × 13 CDW domains that are separated by residual-water-cluster-pinned CDW domain walls. First-principles calculations show that the electric dipole moments in the water adlayer attract electrons to the top layer of 1T-TaS2, which shifts the phonon softening mode and induces the 13 × 13 to 3 × 3 charge order transition. Our results pave the way for creating new collective quantum states of matter with a molecular dipole layer.

9.
Nat Commun ; 11(1): 4002, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32778641

ABSTRACT

Layered kagome-lattice 3d transition metals are emerging as an exciting platform to explore the frustrated lattice geometry and quantum topology. However, the typical kagome electronic bands, characterized by sets of the Dirac-like band capped by a phase-destructive flat band, have not been clearly observed, and their orbital physics are even less well investigated. Here, we present close-to-textbook kagome bands with orbital differentiation physics in CoSn, which can be well described by a minimal tight-binding model with single-orbital hopping in Co kagome lattice. The capping flat bands with bandwidth less than 0.2 eV run through the whole Brillouin zone, especially the bandwidth of the flat band of out-of-plane orbitals is less than 0.02 eV along Γ-M. The energy gap induced by spin-orbit interaction at the Dirac cone of out-of-plane orbitals is much smaller than that of in-plane orbitals, suggesting orbital-selective character of the Dirac fermions.

SELECTION OF CITATIONS
SEARCH DETAIL
...