Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Virol ; 96(13): e0016722, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35695505

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne febrile disease caused by SFTS virus (SFTSV), or Dabie bandavirus, in the Phenuiviridae family. Clinically neurological disorders in SFTS have been commonly reported, but their neuropathogenesis has rarely been studied. Microglia are a type of neuroglia accounting for 10 to 12% of all cells in the brain. As resident immune cells, microglial cells are the first line of immune defense present in the central nervous system (CNS). Here, we report that SFTSV was able to infect microglial cells and stimulate interleukin 1ß (IL-1ß) secretion in the brains of infected neonatal BALB/c mice. We characterized the cell death induced in infected human microglial HMC3 cells, also susceptible to SFTSV, and found that the NOD-like receptor protein 3 (NLRP3) inflammasome was activated, leading to secretion of IL-1ß and pyroptosis. Knockdown of NLRP3 or inhibition of the NLRP3 inflammasome activation suppressed the viral replication, suggesting that the activation of the NLRP3 inflammasome may support SFTSV replication in microglial cells. Viral nonstructural protein NSs, a known modulator of immune responses, interacted and colocalized with NLRP3 for the inflammasome activation. It appeared that the N-terminal fragment, amino acids 1 to 66, of NSs was critical to promote the assembly of the inflammasome complex by interacting with NLRP3 for its activation in microglial cells. Our findings provide evidence that SFTSV may cause neurological disorders through infecting microglia and activating the inflammasome through its nonstructural protein NSs for neural cell death and inflammation. This study may have revealed a novel mechanism of SFTSV NSs in dysregulating host response. IMPORTANCE Encephalitis or encephalopathy during severe fever with thrombocytopenia syndrome (SFTS) is considered a critical risk factor leading to high mortality, but there have been no studies to date on the pathogenesis of encephalitis or encephalopathy caused by SFTS virus. Here, we report that SFTSV infection can active the NLRP3 inflammasome and induce IL-1ß secretion in the brains of infected newborn mice. In infected human HMC3 microglia, SFTSV activated the NLRP3 inflammasome via the viral nonstructural protein NSs through interaction with its N-terminal fragment. Notably, our findings suggest that the activation of the NLRP3 inflammasome may promote SFTSV replication in infected microglial cells. This study may reveal a novel mechanism by SFTSV to dysregulate host responses through its nonstructural protein, which could help us understand viral neuropathogenesis in SFTS patients.


Subject(s)
Encephalitis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Phlebovirus , Pyroptosis , Viral Nonstructural Proteins , Animals , Cells, Cultured , Humans , Inflammasomes/metabolism , Mice , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phlebovirus/metabolism , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/virology , Viral Nonstructural Proteins/metabolism
2.
PLoS Negl Trop Dis ; 16(5): e0010366, 2022 05.
Article in English | MEDLINE | ID: mdl-35522620

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus and can cause neurodevelopmental disorders in fetus. As a neurotropic virus, ZIKV persistently infects neural tissues during pregnancy but the viral pathogenesis remains largely unknown. ZIKV has a positive-sense and single-stranded RNA genome, which encodes 7 non-structural (NS) proteins, participating in viral replication and dysregulation of host immunity. Like those in many other viruses, NS proteins are considered to be products evolutionarily beneficiary to viruses and some are virulence factors. However, we found that some NS proteins encoded by ZIKV genome appeared to function against the viral replication. In this report we showed that exogenously expressed ZIKV NS2A and NS4A inhibited ZIKV infection by inhibiting viral RNA replication in microglial cells and astrocytes. To understand how viral NS proteins suppressed viral replication, we analyzed the transcriptome of the microglial cells and astrocytes and found that expression of NS4A induced the upregulation of ISGs, including MX1/2, OAS1/2/3, IFITM1, IFIT1, IFI6, IFI27, ISG15 or BST2 through activating the ISGF3 signaling pathway. Upregulation of these ISGs seemed to be related to the inhibition of ZIKV replication, since the anti-ZIKV function of NS4A was partially attenuated when the cells were treated with Abrocitinib, an inhibitor of the ISGF3 signaling pathway, or were knocked down with STAT2. Aborting the protein expression of NS4A, but not its nucleic acid, eliminated the antiviral activity of NS4A effectively. Dynamic expression of viral NS proteins was examined in ZIKV-infected microglial cells and astrocytes, which showed comparatively NS4A occurred later than other NS proteins during the infection. We hypothesize that NS4A may possess intrinsic features to serve as a unique type of pathogen associated molecular pattern (PAMP), detectable by the cells to induce an innate immune response, or function with other mechanisms, to restrict the viral replication to a certain level as a negative feedback, which may help ZIKV maintain its persistent infection in fetal neural tissues.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , RNA, Viral/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication , Zika Virus/physiology
3.
PLoS One ; 17(4): e0257408, 2022.
Article in English | MEDLINE | ID: mdl-35446851

ABSTRACT

Zika virus (ZIKV) is a positive-sense RNA flavivirus and can cause serious neurological disorders including microcephaly in infected fetuses. As a mosquito-borne arbovirus, it enters the bloodstream and replicates in various organs. During pregnancy, it can be transmitted from the blood of the viremic mother to the fetus by crossing the placental barrier. Monocytes and macrophages are considered the earliest blood cell types to be infected by ZIKV. As a first line defense, these cells are crucial components in innate immunity and host responses and may impact viral pathogenesis in humans. Previous studies have shown that ZIKV infection can activate inflammasomes and induce proinflammatory cytokines in monocytes. In this report, we showed that ZIKV could infect and induce cell death in human and murine macrophages. In addition to the presence of cleaved caspase-3, indicating that apoptosis was involved, we identified the cleaved caspase-1 and gasdermin D (GSDMD) as well as increased secretion of IL-1ß and IL-18. This suggests that the inflammasome was activated and that may lead to pyroptosis in infected macrophages. The pyroptosis was NLRP3-dependent and could be suppressed in the macrophages treated with shRNA to target and knockdown caspase-1. It was also be inhibited by an inhibitor for caspase-1, indicating that the pyroptosis was triggered via a canonical approach. Our findings in this study demonstrate a concomitant occurrence of apoptosis and pyroptosis in ZIKV-infected macrophages, with two mechanisms involved in the cell death, which may have potentially significant impacts on viral pathogenesis in humans.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Apoptosis , Caspase 1/metabolism , Female , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Placenta/metabolism , Pregnancy , Pyroptosis , Zika Virus/metabolism , Zika Virus Infection/metabolism
4.
Antiviral Res ; 194: 105164, 2021 10.
Article in English | MEDLINE | ID: mdl-34411654

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an acute infectious disease caused by a novel phlebovirus (SFTSV), characterized by fever, thrombocytopenia and leukocytopenia which lead to multiple organ failure with high mortality in severe cases. The SFTSV has spread rapidly in recent years and posed a serious threat to public health in endemic areas. However, specific antiviral therapeutics for SFTSV infection are rare. In this study, we demonstrated that two peptides, SGc1 and SGc8, derived from a hydrophobic region of the SFTSV glycoprotein Gc, could potently inhibit SFTSV replication in a dose-dependent manner without apparent cytotoxicity in various cell lines and with low immunogenicity and good stability. The IC50 (50% inhibition concentration) values for both peptides to inhibit 2 MOI of SFTSV infection were below 10 µM in L02, Vero and BHK21 cells. Mechanistically, SGc1 and SGc8 mainly inhibited viral entry at the early stage of the viral infection. Inhibition of SFTSV replication was specific by both peptides because no inhibitory effect was shown against other viruses including Zika virus and Enterovirus A71. Taken together, our results suggested that viral glycoprotein-derived SGc1 and SGc8 peptides have antiviral potential and warrant further assessment as an SFTSV-specific therapeutic.


Subject(s)
Antiviral Agents/pharmacology , Glycoproteins/pharmacology , Peptides/pharmacology , Phlebovirus/chemistry , Phlebovirus/drug effects , Viral Nonstructural Proteins/pharmacology , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , Enterovirus A, Human/drug effects , Female , Glycoproteins/chemistry , Inhibitory Concentration 50 , Mice , Peptides/chemistry , Phlebovirus/genetics , Severe Fever with Thrombocytopenia Syndrome/drug therapy , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects , Zika Virus/drug effects
5.
Front Cell Infect Microbiol ; 11: 637710, 2021.
Article in English | MEDLINE | ID: mdl-33796483

ABSTRACT

Apoptosis, pyroptosis and necroptosis are regulated processes of cell death which can be crucial for viral disease outcomes in hosts because of their effects on viral pathogenicity and host resistance. Zika virus (ZIKV) is a mosquito-borne flavivirus, which infects humans and can cause neurological disorders. Neural developmental disorders and microcephaly could occur in infected fetuses. Several types of nervous cells have been reported to be susceptible to ZIKV infection. Human astrocytes play important roles in the nutritional support and defense of neurons. In this study, we show that human astrocytes are susceptible to ZIKV infection and undergo progressive cell death after infection. In infected astrocytes we detected no cleavage or activation of pro-caspase-3 and pro-caspase-1. Apoptotic substrates and increased secretion of interleukin (IL)-1ß or IL-18 were not detected, either. These ruled out the occurrence of apoptosis or pyroptosis in ZIKV-infected astrocytes. We detected, however, an increase of phosphorylated receptor-interacting serine/threonine-protein kinase (RIPK)1, RIPK3, and mixed lineage kinase domain-like (MLKL) protein, indicating that programmed necrosis, or necroptosis, was induced in infected astrocytes. The phosphorylation and cell death were inhibited in cells pre-treated with GSK'872, an inhibitor of RIPK3, while inhibition of RIPK1 with an inhibitor, Necrostatin-1, had no effect, suggesting that ZIKV-induced necroptosis was RIPK1-independent in astrocytes. Consistent with this finding, the inhibition of RIPK1 had no effect on the phosphorylation of MLKL. We showed evidence that MLKL phosphorylation was RIPK3-dependent and ZBP-1, which could stimulate RIPK3, was upregulated in ZIKV-infected astrocytes. Finally, we demonstrated that in GSK'872-pre-treated astrocytes, viral replication increased significantly, which indicates that necroptosis may be protective against viral replication in astrocytes. Our finding that astrocytes uniquely underwent necroptosis in response to ZIKV infection provides insight and helps us better understand the viral pathogenesis in the ZIKV-infected central nervous system.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Apoptosis , Astrocytes/metabolism , Humans , Necroptosis , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases , Virus Replication
6.
Viruses ; 13(5)2021 04 27.
Article in English | MEDLINE | ID: mdl-33925713

ABSTRACT

Viral infections are one of the leading causes in human mortality and disease. Broad-spectrum antiviral drugs are a powerful weapon against new and re-emerging viruses. However, viral resistance to existing broad-spectrum antivirals remains a challenge, which demands development of new broad-spectrum therapeutics. In this report, we showed that fludarabine, a fluorinated purine analogue, effectively inhibited infection of RNA viruses, including Zika virus, Severe fever with thrombocytopenia syndrome virus, and Enterovirus A71, with all IC50 values below 1 µM in Vero, BHK21, U251 MG, and HMC3 cells. We observed that fludarabine has shown cytotoxicity to these cells only at high doses indicating it could be safe for future clinical use if approved. In conclusion, this study suggests that fludarabine could be developed as a potential broad-spectrum anti-RNA virus therapeutic agent.


Subject(s)
Antiviral Agents/pharmacology , Enterovirus A, Human/drug effects , Phlebovirus/drug effects , Vidarabine/analogs & derivatives , Zika Virus/drug effects , Animals , Antiviral Agents/chemistry , Cell Line , Cell Survival , Cells, Cultured , Humans , RNA Viruses/drug effects , Vidarabine/chemistry , Vidarabine/pharmacology , Virus Replication/drug effects
7.
Chem Commun (Camb) ; 56(66): 9529-9532, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32687138

ABSTRACT

The efficient regioselective C-H cyanoalkoxylation and cyanoalkylation of 8-aminoquinoline derivatives at the C5 position have been achieved under O2 and N2 atmospheres, respectively. Using 2,2'-azobisisobutyronitrile (AIBN) as a radical precursor, the protocols afforded the corresponding products in moderate to good yields with broad substrate generality through Cu(OAc)2 or NiSO4 catalysis. Furthermore, the single electron transfer (SET) mechanism was proposed via a radical coupling pathway.

8.
Hum Cell ; 33(1): 195-204, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31667785

ABSTRACT

Long non-coding RNA (lncRNA), a member of non-coding RNA family with over 200 nucleotides in length, typically serves as an oncogene or tumor suppressor in tumor progression, such as cancer cell proliferation, apoptosis and glycolysis. Recent studies manifested lncRNA LINC00857 was involved in cell cycle regulation of lung cancer. Due to complicated networks in tumorigenesis, the potential roles of LINC00857 underlying lung cancer progression still need further investigation. In this study, we explored the expression of LINC00857 in lung adenocarcinoma (LUAD) tissues and LUAD cell lines and found a dramatical upregulation of LINC00857 compared with the adjacent normal lung tissues and BEAS-2B cell line, respectively. Then, LINC00857 knockdown led to the cell proliferation and glycolysis was repressed, while the apoptosis was elevated in LUAD cell lines. Furthermore, we identified a direct interaction between LINC00857 and miR-1179 in LUAD cells using bioinformatic method and report assay. Finally, we evidenced LINC00857 promoted cell growth and glycolysis and repressed apoptosis via sponging miR-1179 and further regulating sperm-associated antigen 5 (SPAG5) expression in LUAD cell lines. Hence, our results authenticated that lncRNA LINC00857 regulated the cell proliferation, glycolysis and apoptosis of LUAD cells mainly through targeting the miR-1179/SPAG5 axis, which might be a novel insight into lung cancer progression and provided a potential target for clinical treatment of LUAD patients.


Subject(s)
Adenocarcinoma/genetics , Apoptosis/genetics , Glycolysis/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Adenocarcinoma/metabolism , Humans , Lung Neoplasms/metabolism , MicroRNAs/metabolism
9.
PLoS One ; 13(10): e0205344, 2018.
Article in English | MEDLINE | ID: mdl-30304001

ABSTRACT

Endothelial cells have been considered the central regulators of cytokine storm in the respiratory system during influenza virus infection. Studies have found that elevated autophagy could be an essential component of viral pathogenesis in influenza infection. However, few studies have been performed to examine whether autophagy occurs in human pulmonary endothelial cells (HPMECs). In addition, specific mechanisms about how inflammatory responses are regulated in the endothelial cells remain unclear. We hypothesized that infection of influenza A viruses subtypes H1N1 and H9N2 triggered autophagy, which played an important role in the induction of proinflammatory cytokines, both in human lung epithelial A549 cells and in HPMECs. In this report, we showed our evidence that blockage of autophagy significantly inhibited influenza virus-induced proinflammatory responses and suppressed viral replication. Our data indicated that the inhibition of the cytokine response and viral replication was affected by increasing the expression of endothelial sphingosine 1-phosphate receptor 1 (S1PR1), which might be through the regulation of NF-κB signaling. Overexpression of S1PR1 decreased p65 phosphorylation and translocation into the nucleus. Furthermore, we demonstrated that S1PR1 stimulation inhibited Akt-mTOR signaling, which might contribute to activation of autophagy in HPMECs. Thus, our study provides knowledge crucial to better understanding novel mechanisms underlying the S1PR1-mediated attenuation of cytokine amplification in the pulmonary system during influenza virus infection.


Subject(s)
Autophagy/genetics , Influenza, Human/genetics , Receptors, Lysosphingolipid/genetics , Transcription Factor RelA/genetics , A549 Cells , Autophagy/drug effects , Chemokines/genetics , Endothelial Cells/drug effects , Endothelial Cells/virology , Gene Expression Regulation/drug effects , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza, Human/pathology , Influenza, Human/virology , Lung/metabolism , Lung/virology , NF-kappa B/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , Sphingosine-1-Phosphate Receptors , TOR Serine-Threonine Kinases/genetics
10.
Org Biomol Chem ; 16(11): 1912-1920, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29487929

ABSTRACT

A novel and efficient regioselective C-H fluorination of 8-aminoquinoline amides and sulfonamides at the C5 position was achieved. Using Selectfluor as a "F" reagent and HOAc as an additive, the reaction proceeds smoothly via a radical pathway. This method features metal-free conditions, a broad substrate scope and operational simplicity.

11.
Carbohydr Polym ; 112: 695-700, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25129799

ABSTRACT

The aim of this study was to investigate D-limonene Pickering emulsion stabilized by cellulose nanocrystals (CNCs) and factors that may affect its properties. CNCs were prepared by ammonium persulfate hydrolysis of corncob cellulose, and D-limonene Pickering emulsions were generated by ultrasonic homogenizing method. The morphology and size of the prepared emulsions with different CNCs concentrations were studied by optical microscopy and laser light diffraction. In addition, factors that may affect the stability of emulsions such as ionic concentration, pH and temperature were also studied. As indicated by the experiment data, when temperature rose, the stability to of emulsions would be increased, and the stability of emulsions was reduced with low pH or high salt concentration due to electrostatic screening of the negatively charged CNC particles. In conclusion, high stability of D-limonene Pickering emulsions could be obtained by CNCs.


Subject(s)
Cellulose/chemistry , Cyclohexenes/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Terpenes/chemistry , Emulsions/chemical synthesis , Hydrogen-Ion Concentration , Hydrolysis , Limonene , Spectroscopy, Fourier Transform Infrared , Static Electricity , Temperature , Thermogravimetry , X-Ray Diffraction
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 23(2): 165-8, 2006 Apr.
Article in Chinese | MEDLINE | ID: mdl-16604487

ABSTRACT

OBJECTIVE: To investigate and clarify whether the genetic susceptibility to women with hypertensive disorder complicating pregnancy or pre-eclampsia is associated with polymorphisms and couple sharing rate of transporter associate with antigen processing genes(TAP). METHODS: One hundred and two severe pre-eclampsia women and their spouses served as study group, and 200 normal pregnant women and their spouses were selected as control group. All pregnant women were primipara with single fetus. Genomic DNA was extracted from 2 mL cubital venous blood. We used the amplification refractory mutation system polymerase chain reaction(ARMS-PCR) to characterize TAP gene locus 333, 637, 379, 565, 665. RESULTS: We observed eleven TAP haplotypes. There were four kinds of haplotypes(1A-1D) existing in TAP1, and seven kinds of haplotypes(2A-2G) existing in TAP2. The gene frequencies of TAP2B(Chi2=9.19, P<0.01, RR=4.18) and TAP2F(Chi2=5.34, P<0.05, RR=4.63) of patient group with pre-eclampsia were significantly higher as compared with control group. The analyses of some TAP haplotypes such as TAP1B(Chi2=4.87, P<0.05, RR=3.14), TAP1C(Chi2=5.42, P<0.05, RR=4.90), TAP2B(Chi2=9.65, P<0.01, RR=5.39) showed that the couple sharing rate of pre-eclampsia women and their spouses had statistically a highly significant increase in comparison with that of controls. CONCLUSION: Our data suggest that the presence of TAP2B or TAP2F haplotypes should be considered as a risk increased to pregnant women being susceptible to hypertensive disorder complicating pregnancy; and also the elevated couple sharing rates of TAP1B, TAP1C and TAP2B genes will increase the opportunity or possibility of pregnant women suffering from pre-eclampsia disease.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Hypertension/complications , Polymorphism, Genetic , Pregnancy Complications/etiology , Pregnancy Complications/genetics , Adult , Family Characteristics/ethnology , Female , Genotype , Humans , Male , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...