Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 568
Filter
1.
Mol Carcinog ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980215

ABSTRACT

γ-Tocotrienol (γ-T3) is a major subtype of vitamin E, mainly extracted from palm trees, barley, walnuts, and other plants. γ-T3 has effects on anti-inflammation, anti-oxidation, and potential chemoprevention against malignancies. It is still uncompleted to understand the effect of γ-T3 on the inhibitory mechanism of cancer. This study aimed to investigate whether γ-T3 enhanced autophagy in gastric cancer and the underlying molecular mechanism. The results showed that γ-T3 (0-90 µmol/L) inhibited the proliferation of gastric cancer MKN45 cells and AGS cells, and arrested the cell cycle at the G0/G1 phase in a dose-dependent manner. Autophagy was increased in MKN45 cells treated with γ-T3 (0-45 µmol/L), especially at a dose of 30 µmol/L for 24 h. These effects were reversed by 3-methyladenine pretreatment. Furthermore, γ-T3 (30 µmol/L) also significantly downregulated the expression of pGSK-3ß (ser9) and ß-catenin protein in MKN45 cells, and γ-T3 (20 mg/kg b.w.) effectively decreased the growth of MKN45 cell xenografts in BABL/c mice. GSK-3ß inhibitor-CHIR-99021 reversed the negative regulation of GSK-3ß/ß-Catenin signaling and autophagy. Our findings indicated that γ-T3 enhances autophagy in gastric cancer cells mediated by GSK-3ß/ß-Catenin signaling, which provides new insights into the role of γ-T3 enhancing autophagy in gastric cancer.

2.
J Phys Chem A ; 128(17): 3468-3474, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38635347

ABSTRACT

Predicting the melting temperature of materials has always been a topic of great concern. This article proposes an alternative model for determining the melting temperature of materials based on the main idea of the Lindemann melting criterion combined with the first-principles calculations of density functional theory. To verify the accuracy of the melting model, this article selected typical ionic crystals of MgO and 10 alkali metal halides as the validation objects. The calculation results indicate that the melting temperature of the MgO crystals and I-VII compounds is in good agreement with the experimental results.

3.
Yi Chuan ; 46(3): 219-231, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38632100

ABSTRACT

CRISPR/Cas9 gene editing technology, as a highly efficient genome editing method, has been extensively employed in the realm of animal husbandry for genetic improvement. With its remarkable efficiency and precision, this technology has revolutionized the field of animal husbandry. Currently, CRISPR/Cas9-based gene knockout, gene knock-in and gene modification techniques are widely employed to achieve precise enhancements in crucial production traits of livestock and poultry species. In this review, we summarize the operational principle and development history of CRISPR/Cas9 technology. Additionally, we highlight the research advancements utilizing this technology in muscle growth and development, fiber growth, milk quality composition, disease resistance breeding, and animal welfare within the livestock and poultry sectors. Our aim is to provide a more comprehensive understanding of the application of CRISPR/Cas9 technology in gene editing for livestock and poultry.


Subject(s)
CRISPR-Cas Systems , Livestock , Animals , Livestock/genetics , Poultry/genetics , Gene Editing/methods , Gene Knock-In Techniques
4.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630847

ABSTRACT

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Subject(s)
Deep Learning , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Middle Aged , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Prospective Studies , Precancerous Conditions/pathology
5.
J Imaging Inform Med ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491235

ABSTRACT

Radiofrequency ablation (RFA) is the treatment of choice for atrial fibrillation (AF). Additionally, the utilization of 3D printing for cardiac models offers an in-depth insight into cardiac anatomy and cardiovascular diseases. The study aims to evaluate the clinical utility and outcomes of RFA following in vitro visualization of the left atrium (LA) and pulmonary vein (PV) structures via 3D printing (3DP). Between November 2017 and April 2021, patients who underwent RFA at the First Affiliated Hospital of Xinxiang Medical University were consecutively enrolled and randomly allocated into two groups: the 3DP group and the control group, in a 1:1 ratio. Computed tomography angiography (CTA) was employed to capture the morphology and diameter of the LA and PV, which facilitated the construction of a 3D entity model. Additionally, surgical procedures were simulated using the 3D model. Parameters such as the duration of the procedure, complications, and rates of RFA recurrence were meticulously documented. Statistical analysis was performed using the t-test or Mann-Whitney U test to evaluate the differences between the groups, with a P-value of less than 0.05 considered statistically significant. In this study, a total of 122 patients were included, with 53 allocated to the 3DP group and 69 to the control group. The analysis of the morphological measurements of the LA and PV taken from the workstation or direct entity measurement showed no significant difference between the two groups (P > 0.05). However, patients in the 3DP group experienced significantly shorter RFA times (97.03 ± 28.39 compared to 120.51 ± 44.76 min, t = 3.05, P = 0.003), reduced duration of radiation exposure (2.55 [interquartile range 2.01, 3.24] versus 3.20 [2.28, 3.91] min, Z = 3.23, P < 0.001), and shorter modeling times (7.68 ± 1.03 compared to 8.89 ± 1.45 min, t = 5.38, P < 0.001). 3DP technology has the potential to enhance standard RFA practices by reducing the time required for intraoperative interventions and exposure to radiation.

6.
Exp Neurol ; 376: 114758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513970

ABSTRACT

Impaired long-term memory, a complication of traumatic stress including hemorrhage shock and resuscitation (HSR), has been reported to be associated with multiple neurodegenerations. The ventral tegmental area (VTA) participates in both learned appetitive and aversive behaviors. In addition to being prospective targets for the therapy of addiction, depression, and other stress-related diseases, VTA glutamatergic neurons are becoming more widely acknowledged as powerful regulators of reward and aversion. This study revealed that HSR exposure induces memory impairments and decreases the activation in glutamatergic neurons, and decreased ß power in the VTA. We also found that optogenetic activation of glutamatergic neurons in the VTA mitigated HSR-induced memory impairments, and restored ß power. Moreover, hydrogen sulfide (H2S), a gasotransmitter with pleiotropic roles, has neuroprotective functions at physiological concentrations. In vivo, H2S administration improved HSR-induced memory deficits, elevated c-fos-positive vesicular glutamate transporters (Vglut2) neurons, increased ß power, and restored the balance of γ-aminobutyric acid (GABA) and glutamate in the VTA. This work suggests that glutamatergic neuron stimulation via optogenetic assay and exogenous H2S may be useful therapeutic approaches for improving memory deficits following HSR.


Subject(s)
Disease Models, Animal , Glutamic Acid , Hydrogen Sulfide , Memory Disorders , Mice, Inbred C57BL , Neurons , Animals , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Mice , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/therapy , Male , Neurons/drug effects , Neurons/metabolism , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Shock, Hemorrhagic , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Optogenetics/methods
7.
Mol Biol Rep ; 51(1): 255, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302782

ABSTRACT

BACKGROUND: Mounting evidence suggests that lung adenocarcinoma (LAC) and lung squamous cell carcinoma (LSC) have different biological behaviors and therapeutic regimens in clinical practice. However, limited improvements in molecular differential diagnosis of the two entities have been achieved in recent decades. We aimed to find novel markers that could define non-small cell lung cancer (NSCLC) subtypes. METHODS: We first explored publically available databases to search for DNA methylation signatures that enable a precise discrimination of LAC and LSC. Next-generation sequencing (NGS) was then used to analyze the methylation status and sites of candidate genes in LAC/LSC tissue samples, and a quantitative methylation-sensitive PCR (qMS-PCR) assay was conducted to test the performance of the selected maker in tissue samples and bronchoalveolar lavage fluid (BALF) specimens. RESULTS: We screened 19 top-ranked methylation loci that are differentially methylated between LAC and LSC. Among these hits, 6 methylation sites are enriched within the PREX1 gene promoter, thus becoming our focus. NGS analysis confirmed markedly higher PREX1 methylation levels in LAC than in LSC and revealed the right sites for detection of PREX1 methylation. Furthermore, PREX1 methylation analysis in lung cancer tissue samples defined 9 of 11 pathologically proven LACs, as well as 12 of 14 LSCs. In addition, ~ 80% LAC BALF samples showed methylated PREX1 compared to substantially lower test positivity (0-9%) of it in LSC and other lung conditions (P < 0.01). CONCLUSION: Our pilot study identified a unique epigenetic signature that could effectively distinguish LAC from LSC in various lung samples. It may enhance our in-depth understanding of the biology of lung cancer and pave the way for better accurate diagnosis and treatment stratification in the future.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Pilot Projects , Adenocarcinoma/pathology , DNA Methylation/genetics , Adenocarcinoma of Lung/genetics , Carcinoma, Squamous Cell/genetics , Epigenesis, Genetic/genetics , Biomarkers, Tumor/genetics
8.
J Comput Biol ; 31(3): 241-256, 2024 03.
Article in English | MEDLINE | ID: mdl-38377572

ABSTRACT

More and more studies have shown that microRNAs (miRNAs) play an indispensable role in the study of complex diseases in humans. Traditional biological experiments to detect miRNA-disease associations are expensive and time-consuming. Therefore, it is necessary to propose efficient and meaningful computational models to predict miRNA-disease associations. In this study, we aim to propose a miRNA-disease association prediction model based on sparse learning and multilayer random walks (SLMRWMDA). The miRNA-disease association matrix is decomposed and reconstructed by the sparse learning method to obtain richer association information, and at the same time, the initial probability matrix for the random walk with restart algorithm is obtained. The disease similarity network, miRNA similarity network, and miRNA-disease association network are used to construct heterogeneous networks, and the stable probability is obtained based on the topological structure features of diseases and miRNAs through a multilayer random walk algorithm to predict miRNA-disease potential association. The experimental results show that the prediction accuracy of this model is significantly improved compared with the previous related models. We evaluated the model using global leave-one-out cross-validation (global LOOCV) and fivefold cross-validation (5-fold CV). The area under the curve (AUC) value for the LOOCV is 0.9368. The mean AUC value for 5-fold CV is 0.9335 and the variance is 0.0004. In the case study, the results show that SLMRWMDA is effective in inferring the potential association of miRNA-disease.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Algorithms , Area Under Curve , Computational Biology/methods , Genetic Predisposition to Disease
9.
Zool Res ; 45(1): 189-200, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38199973

ABSTRACT

Monitoring the prevalence of antimicrobial resistance genes (ARGs) is vital for addressing the global crisis of antibiotic-resistant bacterial infections. Despite its importance, the characterization of ARGs and microbiome structures, as well as the identification of indicators for routine ARG monitoring in pig farms, are still lacking, particularly concerning variations in antimicrobial exposure in different countries or regions. Here, metagenomics and random forest machine learning were used to elucidate the ARG profiles, microbiome structures, and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe. Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs ( P<0.05). ANT(6)-Ib, APH(3')-IIIa, and tet(40) were identified as shared core ARGs between the two pig populations. Furthermore, the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions. Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs, respectively. Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100% and 98.7%, respectively. Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy ( r=0.72-0.88). Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs. The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.


Subject(s)
Anti-Infective Agents , Gastrointestinal Microbiome , Humans , Animals , Swine , Anti-Bacterial Agents/pharmacology , Manure , Drug Resistance, Bacterial/genetics
10.
Insect Mol Biol ; 33(1): 41-54, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37740676

ABSTRACT

Caddisworms (Trichoptera) spin adhesive silks to construct a variety of underwater composite structures. Many studies have focused on the fibroin heavy chain of caddisworm silk and found that it contains heavy phosphorylation to maintain a stable secondary structure. Besides fibroins, recent studies have also identified some new silk proteins within caddisworm silk. To better understand the silk composition and its secretion process, this study reports the silk gland proteome of a retreat-building caddisworm, Stenopsyche angustata Martynov (Trichoptera, Stenopsychidae). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), 2389 proteins were identified in the silk gland of S. angustata, among which 192 were predicted as secreted silk proteins. Twenty-nine proteins were found to be enriched in the front silk gland, whereas 109 proteins were enriched in the caudal silk gland. The fibroin heavy chain and nine uncharacterized silk proteins were identified as phosphorylated proteins. By analysing the sequence of the fibroin heavy chain, we found that it contains 13 Gly/Thr/Pro-rich regions, 12 Val/Ser/Arg-rich regions and a Gly/Arg/Thr-rich region. Three uncharacterized proteins were identified as sericin-like proteins due to their larger molecular weights, signal peptides and repetitive motifs rich in serine. This study provides valuable information for further clarifying the secretion and adhesion of underwater caddisworm silk.


Subject(s)
Bombyx , Fibroins , Animals , Silk/chemistry , Fibroins/genetics , Fibroins/chemistry , Insecta/metabolism , Larva/metabolism , Proteome/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Bombyx/metabolism , Insect Proteins/metabolism
11.
Small ; 20(15): e2306821, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009496

ABSTRACT

Low-dimensional perovskites afford improved stability against moisture, heat, and ionic migration. However, the low dimensionality typically results in a wide bandgap and strong electron-phonon coupling, which is undesirable for optoelectronic applications. Herein, semiconducting A-site organic cation engineering by electron-acceptor bipyridine (bpy) cations (2,2'-bpy2+ and 4,4'-bpy2+) is employed to optimize band structure in low-dimensional perovskites. Benefiting from the merits of lower lowest unoccupied molecular orbital (LUMO) energy for 4,4'-bpy2+ cation, the corresponding (4,4'-bpy)PbI4 is endowed with a smaller bandgap (1.44 eV) than the (CH3NH3)PbI3 (1.57 eV) benchmark. Encouragingly, an intramolecular type II band alignment formation between inorganic Pb-I octahedron anions and bpy2+ cations favors photogenerated electron-hole pairs separation. In addition, a shortening distance between inorganic Pb-I octahedral chains in (4,4'-bpy)PbI4 single crystal (SC) can effectively promote carrier transfer. As a result, a self-powered photodetector based on (4,4'-bpy)PbI4 SC exhibits 131 folds higher on/off ratio (3807) than the counterpart of (2,2'-bpy)2Pb3I10 SC (29). The presented result provides an effective strategy for exporting novel organic cation-based low-dimensional perovskite SC for high-performance optoelectronic devices.

12.
Mol Neurobiol ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041715

ABSTRACT

Peri-operative hemorrhagic shock and resuscitation (HSR), a severe traumatic stress, is closely associated with post-operative anxiety, depression, and cognitive dysfunction, subsequently causing a serious burden on families and society. Following the co-release of corticotropin-releasing factor and catecholamine, traumatic stress activates dopaminergic neurons, increasing the addictive behavior and neurocognitive impairment risks. This study investigates the association between cognitive dysfunction and dopaminergic neurons in the mPFC under HSR conditions. This study established an HSR model by bleeding and re-transfusion in the mice. After HSR exposure, a dopamine D1 receptor antagonist, SKF-83566, was administered intraperitoneally for three consecutive days. Novel object recognition (NOR), conditioned fearing (FC), and conditioned place preference (CPP) were used to assess cognitive changes 16 days after HSR exposure. Local field potential (LFP) in the mPFC was also investigated during the novel object exploration. Compared with the mice exposed to sham, there was a significant decrease in the object recognition index, a reduction in context- and tone-related freezing time, an increase in CPP values, a downregulation of ß-power but upregulation of γ-power in the mPFC in the mice exposed to HSR. Moreover, the mice exposed to HSR showed significantly upregulated TH-positive cell number, cleaved caspase-1- and TH-positive cells, and interleukin (IL)-1ß/18 expression in the mPFC compared with sham; SKF-83566 could partially reverse these alternations. The HSR caused excessive dopaminergic signaling and cognitive dysfunction in the mPFC, a condition that might be ameliorated using a dopamine D1 receptor inhibitor.

13.
Soft Matter ; 19(44): 8659-8667, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37927210

ABSTRACT

Supramolecular polymerization between cationic peptides and anionic polyoxometalates has emerged as a promising strategy for the creation of peptide-based biomimetic underwater adhesives. However, the extremely rigorous requirements for peptide design are an important obstacle to the fabrication of available peptide adhesives with controlled adhesion and versatile functionality. Inspired by marine sessile organisms in nature, here we reported a modular co-assembly method to easily produce peptide/polyoxometalate underwater adhesive materials through mixing two complementary cationic peptides (Pep1 and Pep2) with a single anionic polyoxometalate K6H[SiW9V3O40] in aqueous solution, which are not possible to be obtained from an individual peptide module. We demonstrated that the relatively hydrophobic Pep1 contributes to the bulk cohesion of the resulting adhesive, while the relatively hydrophilic Pep2 not only enables the interfacial adhesion but also regulates the bulk cohesion of the Pep1/Pep2/SiW9V3 adhesive. Rheological and shear adhesion tests showed that the macroscopic adhesion performance of the resulting adhesive materials could be conveniently adjusted by simply changing the molar ratio of the complementary peptide modules without any complicated peptide design. Interestingly, the luminescence properties of K11[Eu(PW11O39)2] (labelled as EuPW11) could be maintained within the Pep1/Pep2/EuPW11 adhesive even in a water environment. The lifetime of the Pep1/Pep2/EuPW11 adhesive was 2.19 ms. The fluorescence quantum yield of the Pep1/Pep2/EuPW11 adhesive was measured to be 27.46%. This study unveils that the modular co-assembly method can effectively simplify the material design of peptide/polyoxometalate underwater adhesives, which will significantly broaden the horizon of material pools and extend their availability space.


Subject(s)
Adhesives , Anions , Peptides , Adhesives/chemistry , Polyelectrolytes , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry
14.
Medicine (Baltimore) ; 102(46): e35664, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37986328

ABSTRACT

Growing evidence supports an oncogenic role for glucoside xylosyltransferase 2 (GXYLT2) in a number of malignancies. To evaluate the prognostic value and oncogenic function of GXYLT2 in diverse cancer types, we analyzed sequencing data from public databases on 33 tumor tissues and their corresponding normal tissues. We found that GXYLT2 was overexpressed in a number of tumors, and that its expression was positively correlated with disease progression and mortality in several major cancer types including stomach adenocarcinoma (STAD). GXYLT2 was also linked to tumor size, grade, and the immune and molecular subtypes of STAD. GO and KEGG pathway analyses of GXYLT2 co-expressed genes in STAD suggested that GXYLT2 possibly plays a role in epithelial-mesenchymal transition, extracellular matrix production and degradation, angiogenesis, apoptosis, as well as in tumor inflammation, such as cytokine production and T cell activation. Finally, prognostic nomograms were created and validated for predicting 1, 3, and 5-year survival of patients with STAD. Our findings indicate that GXYLT2 may play a role in tumorigenesis and tumor immunity, and it may serve as a prognostic marker and potential immunotherapeutic target for STAD and some other types of cancer.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , Humans , Carcinogenesis/genetics , Disease Progression , Prognosis , Stomach Neoplasms/genetics
15.
Cancer Med ; 12(18): 18861-18871, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37706628

ABSTRACT

BACKGROUND: Three-dimensional visualization preoperative evaluation (3D-VPE) and enhanced recovery after surgery (ERAS) have been suggested to improve outcomes of cancer surgery in patients, yet little is known regarding their clinical benefit in patients with gallbladder cancer (GBC). We hypothesized that the combination of 3D-VPE and ERAS would improve the outcome of patients undergoing surgery for GBC. OBJECTIVE: This study aimed to determine if 3D-VPE and ERAS can improve the outcomes and overall survival in patients with GBC, establishing a novel patient management strategy for GBC. METHODS: A total of 227 patients with GBC were recruited and divided into two groups: those who received traditional treatment between January 2000 and December 2010 (n = 86; the control group) and those who underwent 3D-VPE and ERAS between January 2011 and December 2017 (n = 141). Univariate and multivariate analyses were employed to assess the relationship among disease stages, lymph node invasion, and cell differentiation between the two groups. Cox regression analysis was used to investigate patient survival in these groups. RESULTS: Patients who underwent 3D-VPE and ERAS showed a significantly higher R0 resection rate (67.4% vs. 20.9%, p < 0.001) and dissected lymph node number (26.6 ± 12.6 vs. 16.3 ± 7.6 p < 0.001) compared to the control group. The median survival was 27.4 months, and the 1- and 3-year survival rates were 84.4% and 29.8%, respectively, in patients who received combined management; in the control cohort, the median survival was 12.7 months, and the 1- and 3-year survival rates were 53.5% and 15.1%, respectively. In addition, some postoperative complications and risk factors were diminished relative to the traditionally treated patients. CONCLUSION: The implementation of 3D-VPE and ERAS can significantly improve the prognosis and outcomes of patients with GBC and should be considered for wide use in clinical practice.

16.
BMJ Case Rep ; 16(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580097

ABSTRACT

Physiological changes during pregnancy and lactation result in increased lumpiness of the breast. This makes the evaluation of the breast challenging. Although most self-detected lumps, during this period, tend to be benign, the priority in these patients is to exclude tumours that may require prompt management. We present a case of phyllodes tumour that occurred during lactation and discussed the resultant pitfalls that may occur during the triple assessment of a breast lump in a lactating mother.


Subject(s)
Breast Neoplasms , Phyllodes Tumor , Female , Pregnancy , Humans , Lactation , Breast/diagnostic imaging , Breast/pathology , Breast Feeding , Phyllodes Tumor/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology
17.
Water Sci Technol ; 87(11): 2820-2839, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37318926

ABSTRACT

Climate change and increasing urbanization have contributed greatly to urban flooding, making it a global problem. The resilient city approach provides new ideas for urban flood prevention research, and currently, enhancing urban flood resilience is an effective means for alleviating urban flooding pressure. This study proposes a method to quantify the resilience value of urban flooding based on the `4R' theory of resilience, by coupling the urban rainfall and flooding model to simulate urban flooding, and the simulation results are used for calculating index weights and assessing the spatial distribution of urban flood resilience in the study area. The results indicate that (1) the high level of flood resilience in the study area is positively correlated with the points prone to waterlogging; the more an area is prone to waterlogging, the lower the flood resilience value. (2) The flood resilience index in most areas shows a significant local spatial clustering effect, the number of areas with nonsignificant local spatial clustering accounting for 46% of the total. The urban flood resilience assessment system constructed in this study provides a reference for assessing the urban flood resilience of other cities, thus facilitating the decision-making process of urban planning and disaster mitigation.


Subject(s)
Disasters , Floods , Cities , Urbanization , China
18.
Chem Sci ; 14(16): 4426-4433, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37123181

ABSTRACT

We report herein the regioselective synthesis of all-carbon lemniscular nanohoops bis-po-CC and bis-pm-TC by the rational control of ring closures at the different positions of planar chiral tetrasubstituted [2.2]paracyclophane. Topological analyses reveal that bis-pm-TC is topologically chiral while bis-po-CC is topologically achiral. X-ray crystal analysis demonstrates that bis-pm-TC adopts a lemniscular conformation with a contiguous conjugation. CD and CPL measurements further reveal that the chiroptical properties of bis-pm-TC are obviously different from those of bis-po-CC due to their different topological chiralities.

19.
Stroke ; 54(6): 1464-1473, 2023 06.
Article in English | MEDLINE | ID: mdl-37154059

ABSTRACT

BACKGROUND: Robot-assisted arm training is generally delivered in the robot-like manner of planar or mechanical 3-dimensional movements. It remains unclear whether integrating upper extremity (UE) natural coordinated patterns into a robotic exoskeleton can improve outcomes. The study aimed to compare conventional therapist-mediated training to the practice of human-like gross movements derived from 5 typical UE functional activities managed with exoskeletal assistance as needed for patients after stroke. METHODS: In this randomized, single-blind, noninferiority trial, patients with moderate-to-severe UE motor impairment due to subacute stroke were randomly assigned (1:1) to receive 20 sessions of 45-minute exoskeleton-assisted anthropomorphic movement training or conventional therapy. Treatment allocation was masked from independent assessors, but not from patients or investigators. The primary outcome was the change in the Fugl-Meyer Assessment for Upper Extremity from baseline to 4 weeks against a prespecified noninferiority margin of 4 points. Superiority would be tested if noninferiority was demonstrated. Post hoc subgroup analyses of baseline characteristics were performed for the primary outcome. RESULTS: Between June 2020 and August 2021, totally 80 inpatients (67 [83.8%] males; age, 51.9±9.9 years; days since stroke onset, 54.6±38.0) were enrolled, randomly assigned to the intervention, and included in the intention-to-treat analysis. The mean Fugl-Meyer Assessment for Upper Extremity change in exoskeleton-assisted anthropomorphic movement training (14.73 points; [95% CI, 11.43-18.02]) was higher than that of conventional therapy (9.90 points; [95% CI, 8.15-11.65]) at 4 weeks (adjusted difference, 4.51 points [95% CI, 1.13-7.90]). Moreover, post hoc analysis favored the patient subgroup (Fugl-Meyer Assessment for Upper Extremity score, 23-38 points) with moderately severe motor impairment. CONCLUSIONS: Exoskeleton-assisted anthropomorphic movement training appears to be effective for patients with subacute stroke through repetitive practice of human-like movements. Although the results indicate a positive sign for exoskeleton-assisted anthropomorphic movement training, further investigations into the long-term effects and paradigm optimization are warranted. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2100044078.


Subject(s)
Exoskeleton Device , Movement Disorders , Stroke Rehabilitation , Stroke , Male , Humans , Adult , Middle Aged , Female , Stroke Rehabilitation/methods , Single-Blind Method , Recovery of Function , Treatment Outcome , Upper Extremity , Stroke/therapy
20.
Adv Mater ; 35(31): e2210878, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37146980

ABSTRACT

In recent years, halide perovskites have shown great application potential in X-ray detection due to their superior optoelectronic properties and high X-ray attenuation coefficient. However, large-area perovskite fabrication for high performance X-ray detectors remains extremely challenging. Herein, ultrasound-assisted crystallization combined with the hot-pressing method is proposed to prepare large-area (10 cm × 10 cm) and high-quality quasi-monocrystalline thick film of a mixed-cation perovskite MA0.42 FA0.58 PbI3 . The rapid ultrasound-assisted crystallization provides more homogeneous nucleation, which is essential to the fabrication of large-area and uniform perovskite microcrystalline film. Furthermore, the post hot-pressing treatment is implemented to fuse the crystal boundaries, rearrange the crystal grains, and eliminate the voids between crystals, resulting in a quasi-monocrystalline film. After the hot-pressing treatment, the carrier mobility and the carrier mobility-lifetime product increased about 13-fold (from 1.8 to 23.5 cm2 s-1 V-1 ) and 18 times (from 8.4 × 10-6 to 1.5 × 10-4 cm2 V-1 ), respectively. As a result, a high-performance MA0.42 FA0.58 PbI3 quasi-monocrystalline X-ray detector is achieved with an impressively high sensitivity (1.16 × 106 µC Gyair -1 cm-2 ) and low detection limit (37.4 nGyair s-1 ), demonstrating the potential of the ultrasound-assisted crystallization and hot-pressing strategy from an industrial perspective.

SELECTION OF CITATIONS
SEARCH DETAIL
...