Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4214-4220, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046912

ABSTRACT

This study aims to establish an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) method for the determination of emodin-8-O-ß-D-glucoside(EG) and its metabolites in plasma, and to investigate the toxicokinetics(TK) behavior of them in rats. To be specific, the TK of EG and its metabolites from the first to the last administration in the repeated dose toxicity study was determined, and the kinetic parameters were calculated. The exposure of EG prototype and metabolites in rat plasma after oral administration of different doses of EG was evaluated. The result showed that the prototype of EG and its metabolites aloe-emodin-8-O-ß-D-glucoside, emodin, aloe-emodin, and hydroxyemodin could be detected in rats after oral administration of high-, medium-, and low-dose EG. The area under the curve(AUC) of the prototype and metabolites after the first and last administration was in positive correlation with the dose. The time to the maximum concentration(T_(max)) of EG and metabolites in the three administration groups was <6 h, and the longest in vivo residence time was 12 h. The T_(max) and in vivo residence time of EG were prolonged with the increase in the dose. The metabolites emodin, aloe-emodin, and hydroxyemodin all had two peaks. Both hydroxyemodin and aloe-emodin exhibited increased plasma exposure, slow metabolism, and accumulation in vivo. In addition, aloe-emodin-8-O-ß-D-glucoside and emodin disappeared with the increase in dose, suggesting the change of the metabolic pathway of EG in vivo in the case of high-dose administration. The mechanism of high-dose EG in vivo needs to be further explored. This study preliminarily elucidates the TK behavior of EG in rats, which is expected to support clinical drug use.


Subject(s)
Emodin , Animals , Anthraquinones , Chromatography, High Pressure Liquid/methods , Emodin/toxicity , Glucosides/toxicity , Mass Spectrometry , Rats , Toxicokinetics
2.
Zhongguo Zhong Yao Za Zhi ; 45(12): 2954-2959, 2020 Jun.
Article in Chinese | MEDLINE | ID: mdl-32627472

ABSTRACT

In this study, we aimed to establish a rat liver micro-tissue evaluation system to evaluate the hepatotoxicity of the main monomers in Polygonum multiflorum. Rat primary hepatocytes were isolated and purified by two-step in situ perfusion method to prepare hepatic parenchymal cells. The ultra-low adsorption plate and the inverted model were used to establish an in vitro hepatotoxicity evaluation system. After the system was established, the main monomer components(monanthone with emodin type, rhein, emodin, emodin-8-O-ß-D-glucopyranoside, physcion) of P. multiflorum were selected for in vitro hepatotoxicity evaluation. This study showed that the primary cells of the liver can form liver micro-tissues in the low adsorption plate method and the mold perfusion method, with good liver structure and function, which can be used to evaluate the hepatotoxicity of the drug to be tested after long-term administration. The five monomers to be tested in P. multiflorum can significantly affect the proliferation of primary liver micro-tissues in rats in a dose-and time-dependent manner. The hepatotoxic effects were as follows: monanthone with emodin type > rhein > emodin > emodin-8-O-ß-D-glucopyranoside > physcion. The results suggested that the emodin-type monoterpene and rhein might be the potential hepatotoxic components, while the metabolites of emodin-8-O-ß-D-glucoside and emodin methyl ether showed more toxic risks. The rat primary hepatocyte micro-tissue model system established in this experiment could be used to achieve long-term drug administration in vitro, which was consistent with the clinical features of liver injury caused by long-term use of P. multiflorum. The experimental results provided important information and reference on the clinical application and toxic component of P. multiflorum.


Subject(s)
Chemical and Drug Induced Liver Injury , Emodin , Fallopia multiflora , Polygonum , Animals , Glucosides , Plant Extracts , Rats
3.
Zhongguo Zhong Yao Za Zhi ; 45(2): 412-417, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-32237326

ABSTRACT

The bilirubin metabolism mediated by the phase Ⅱ metabolizing enzyme UGT1A1 in the liver was evaluated to study the potential hepatotoxicity risk based on investigation on the inhibitory effect of rhein and its metabolites on the UGT1A1 enzyme in Rhei Radix et Rhizoma. Firstly, in vitro liver microsomes incubation was used to initiate the phase Ⅱ metabolic reaction to investigate the inhibitory effect of rheinon UGT1A1 enzyme. Secondly, the phase Ⅰ and phase Ⅱ metabolic reactions were initiated to investigate the hepatotoxicity risk of rhein metabolites. It was found that the rhein and its phase Ⅱ metabolites had no significant inhibitory effect on UGT1A1 enzyme, but its phase Ⅰ metabolites significantly reduced UGT1A1 enzyme activity. Based on the metabolites analysis, it is speculated that the rhein phase Ⅰ metabolite rheinhydroxylate and its tautomers have certain hepatotoxicity risks, while the toxicity risk induced by the prototype and phase Ⅱ metabolites of rheinglucoside, rheinglucuronic acid and rhein sulfate is small.


Subject(s)
Anthraquinones/toxicity , Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal/toxicity , Liver/drug effects , Microsomes, Liver/drug effects , Glucuronosyltransferase/metabolism , Humans , Liver/enzymology , Rhizome
4.
Zhongguo Zhong Yao Za Zhi ; 44(18): 4043-4047, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31872743

ABSTRACT

The purpose of this study was to investigate the effect of apigenin on UGT1 A1 enzyme activity and to predict the potential drug-drug interaction of apigenin in clinical use. First,on the basis of previous experiments,the binding targets and binding strength of apigenin to UGT1 A1 enzyme were predicted by computer molecular docking method. Then the inhibitory effect of apigenin on UGT1 A1 enzyme was evaluated by in vitro human liver microsomal incubation system. Molecular docking results showed that apigenin was docked into the active region of UGT1 A1 enzyme protein F,consistent with the active region of bilirubin docking,with moderate affinity. Apigenin flavone mother nucleus mainly interacted with amino acid residues ILE343 and VAL345 to form hydrophobic binding Pi-Alkyl. At the same time,the hydroxyl group on the mother nucleus and the amino acid residue LYS346 formed an additional hydrogen bond,which increased the binding of the molecule to the protein. These results suggested that the flavonoid mother nucleus structure had a special structure binding to the enzyme protein UGT1 A1,and the introduction of hydroxyl groups into the mother nucleus can increase the binding ability. In vitro inhibition experiments showed that apigenin had a moderate inhibitory effect on UGT1 A1 enzyme in a way of competitive inhibition,which was consistent with the results of molecular docking. The results of two experiments showed that apigenin was the substrate of UGT1 A1 enzyme,which could inhibit the activity of UGT1 A1 enzyme competitively,and there was a risk of drug interaction between apigenin and UGT1 A1 enzyme substrate in clinical use.


Subject(s)
Apigenin/chemistry , Bilirubin/chemistry , Drug Interactions , Microsomes, Liver/drug effects , Molecular Docking Simulation , Glucuronosyltransferase/metabolism , Humans , Hydrogen Bonding
5.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2367-2372, 2019 Jun.
Article in Chinese | MEDLINE | ID: mdl-31359665

ABSTRACT

To evaluate the hepatotoxicity risks of physcion on the basis of the bilirubin metabolism mediated by glucuronidation of UDP-glucuronosyltransferases 1A1(UGT1A1 enzyme). The monomers were added into the rat liver microsomes to test the hepatotoxicity by using bilirubin as UGT1A1 enzyme substrate, with apparent inhibition constant K_i as the evaluation index. Liver microsome incubation in vitro was adopted to initiate phase Ⅱ metabolic reaction and investigate the inhibitory effect of physcion. Then the phase Ⅰ and Ⅱ metabolic reactions were initiated to investigate the comprehensive inhibition of metabolites and prototype components. The results showed that when only the phase Ⅱ reaction was initiated, physcion directly acted on the UGT1A1 enzyme in a prototype form, exhibited weak inhibition and the inhibition type was mixed inhibition; When the phase Ⅰ and Ⅱ reactions were initiated simultaneously, the inhibitory effects of physcion on UGT1A1 enzyme became strong and the inhibition type was mixed inhibition, suggesting that physcion had phase Ⅰ and Ⅱ metabolic processes, and the metabolites had strong inhibitory effect on UGT1A1 enzyme. This experiment preliminarily proved that the metabolites of physcion may be the main components to induce hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Emodin/analogs & derivatives , Glucuronosyltransferase/metabolism , Microsomes, Liver/drug effects , Animals , Emodin/toxicity , Kinetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...