Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(7): e67632, 2013.
Article in English | MEDLINE | ID: mdl-23844043

ABSTRACT

Thrombomodulin (TM) is highly expressed in endothelial cells and acts as a natural anticoagulation factor to maintain circulation homeostasis. TM is an interesting molecule with many physiological functions, including anti-inflammation, anti-thrombosis, and carcinogenesis inhibition. TM can also be detected on the spinous layer of epidermal keratinocytes. However, the role of epidermal TM is still under investigation. In this study, we investigated keratinocyte TM expression and regulation in response to sub-cytotoxic ultraviolet B (UVB) irradiation. Oxidative stress was assessed with DCF and the results revealed that UVB irradiation significantly and dose-dependently augmented reactive oxygen species (ROS) production in HaCaT cells. In addition, low-dose UVB irradiation decreased TM mRNA and protein levels. Blocking ROS production and ERK activation prevented UVB-induced TM down-regulation. The nuclear p53 accumulation and TM promoter binding was observed within 3 h after UVB exposure. Small interfering RNA-mediated p53 knockdown disrupted the UVB-mediated TM protein down-regulation. Our study demonstrates that UVB irradiation results in ROS accumulation and ERK activation, which causes the nuclear p53 accumulation and TM promoter binding to inhibit TM expression. This study provides novel evidence demonstrating that p53 serves as a key regulator of keratinocyte TM expression.


Subject(s)
Gene Expression Regulation/radiation effects , Keratinocytes/radiation effects , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Signal Transduction/radiation effects , Thrombomodulin/genetics , Tumor Suppressor Protein p53/genetics , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oxidative Stress , Promoter Regions, Genetic , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Thrombomodulin/antagonists & inhibitors , Thrombomodulin/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays
2.
Article in English | MEDLINE | ID: mdl-21423689

ABSTRACT

Salvianolic acid B (Sal B), a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothelial cells (HUVECs) were incubated at Sal B concentrations that can be reached in human plasma by pharmacological intervention. Results indicated that caldesmon, an actin-stabilizing protein, was downregulated in Sal B-exposed HUVECs. Proteins that showed increased expression levels upon Sal B treatment were vimentin, T-complex protein 1, protein disulfide isomerase, tropomyosin alpha, heat shock protein beta-1, UBX domain-containing protein 1, alpha enolase, and peroxiredoxin-2. Additionally, Sal B leads to increased phosphorylation of nucleophosmin in a dose-dependent manner and promotes proliferation of HUVECs. We found that Sal B exhibited a coordinated regulation of enzymes and proteins involved in cytoskeletal reorganization, oxidative stress, and cell growth. Our investigation would provide understanding to the endothelium protection information of Sal B.

SELECTION OF CITATIONS
SEARCH DETAIL
...