Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(22): 15053-15060, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776531

ABSTRACT

Electrocatalysis is considered promising in renewable energy conversion and storage, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, a hydrodynamic single-particle electrocatalysis methodology is developed by integrating collision electrochemistry and microfluidics to improve the activity of an electrocatalysis system. As a proof-of-concept, hydrogen evolution reaction (HER) is electrocatalyzed by individual palladium nanoparticles (Pd NPs), with the development of microchannel-based ultramicroelectrodes. The controlled laminar flow enables the precise delivery of Pd NPs to the electrode-electrolyte interface one by one. Compared to the diffusion condition, hydrodynamic collision improves the number of active sites on a given electrode by 2 orders of magnitude. Furthermore, forced convection enables the enhancement of proton mass transport, thereby increasing the electrocatalytic activity of each single Pd NP. It turns out that the improvement in mass transport increases the reaction rate of HER at individual Pd NPs, thus a phase transition without requiring a high overpotential. This study provides new avenues for enhancing electrocatalytic activity by altering operating conditions, beyond material design limitations.

2.
Plant Physiol Biochem ; 208: 108473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430784

ABSTRACT

Alternative splicing (AS) was an important post-transcriptional mechanism that involved in plant resistance to adversity stress. WRKY transcription factors function as transcriptional activators or repressors to modulate plant growth, development and stress response. However, the role of alternate splicing of WRKY in cold tolerance is poorly understood in tea plants. In this study, we found that the CsWRKY21 transcription factor, a member of the WRKY IId subfamily, was induced by low temperature. Subcellular localization and transcriptional activity assays showed that CsWRKY21 localized to the nucleus and had no transcriptional activation activity. Y1H and dual-luciferase reporter assays showed that CsWRKY21 suppressed expression of CsABA8H and CsUGT by binding with their promoters. Transient overexpression of CsABA8H and CsUGT reduced abscisic acid (ABA) content in tobacco leaves. Furthermore, we discovered that CsWRKY21 undergoes AS in the 5'UTR region. The AS transcript CsWRKY21-b was induced at low temperature, up to 6 folds compared to the control, while the full-length CsWRKY21-a transcript did not significantly change. Western blot analysis showed that the retention of introns in the 5'UTR region of CsWRKY21-b led to higher CsWRKY21 protein content. These results revealed that alternative splicing of CsWRKY21 involved in cold tolerance of tea plant by regulating the protein expression level and then regulating the content of ABA, and provide insights into molecular mechanisms of low temperature defense mediated by AS in tea plant.


Subject(s)
Alternative Splicing , Plant Proteins , Alternative Splicing/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , 5' Untranslated Regions , Transcription Factors/genetics , Transcription Factors/metabolism , Cold Temperature , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Tea , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Stress, Physiological
3.
Comput Struct Biotechnol J ; 23: 688-699, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38292476

ABSTRACT

The self-assembly of Aß peptides into toxic oligomers and fibrils is the primary cause of Alzheimer's disease. Moreover, the conformational transition from helix to sheet is considered a crucial step in the aggregation of Aß peptides. However, the structural details of this process still remain unclear due to the heterogeneity and transient nature of the Aß peptides. In this study, we developed an enhanced sampling strategy that combines artificial neural networks (ANN) with metadynamics to explore the conformational space of the Aß42 peptides. The strategy consists of two parts: applying ANN to optimize CVs and conducting metadynamics based on the resulting CVs to sample conformations. The results showed that this strategy achieved better sampling performance in terms of the distribution of sampled conformations. The sampling efficiency is increased by 10-fold compared to our previous Hamiltonian Exchange Molecular Dynamics (MD) and by 1000-fold compared to ordinary MD. Based on the sampled conformations, we constructed a Markov state model to understand the detailed transition process. The intermediate states in this process are identified, and the connecting paths are analyzed. The conformational transitions in D23-K28 and M35-V40 are proven to be crucial for aggregation. These results are helpful in clarifying the mechanism and process of Aß42 peptide aggregation. D23-K28 and M35-V40 can be identified as potential targets for screening and designing inhibitors of Aß peptide aggregation.

4.
ACS Biomater Sci Eng ; 9(11): 6481-6489, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37779379

ABSTRACT

Living materials that combine living cells and synthetic matrix materials have become promising research fields in recent years. While multicellular systems present exclusive benefits in developing living materials over single-cell systems, creating artificial multicellular systems can be challenging due to the difficulty in controlling the multicellular assemblies and the complexity of cell-to-cell interactions. Here, we propose a coculture platform capable of isolating and controlling the spatial distribution of algal-bacterial consortia, which can be utilized to construct photosynthetic living fibers. Through coaxial extrusion-based 3D printing, hydrogel fibers containing bacteria or algae can be deposited into designated structures and further processed into materials with precise geometries. In addition, the photosynthetic living fibers demonstrate a significant synergistic catalytic effect resulting from the immobilization of both bacteria and algae, which effectively optimizes sewage treatment for bioremediation purposes. The integration of microbial consortia and 3D printing yields functional living materials with promising applications in biocatalysis, biosensing, and biomedicine. Our approach provides an optimized solution for constructing efficient multicellular systems and opens a new avenue for the development of advanced materials.


Subject(s)
Bacteria , Hydrogels , Hydrogels/chemistry , Printing, Three-Dimensional
5.
Anal Biochem ; 659: 114936, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36220375

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1) plays a critical role in inflammatory and immunometabolism programming through catalyzing the oxidation of tryptophan (Trp) into downstream N-formylkynurenine. IDO1 is typically up-regulated in malignant tumors, making it a potential biomarker for cancer diagnosis. Here we show an effective strategy for tumor cell detection by integrating IDO1 activity assay with single cell-encapsulated droplets on a microfluidic platform for high-throughput bioanalysis. Mixed cells, as well as other cofactors, are encapsulated in individual droplets, which act as dynamic microreactors for IDO1-catalyzed oxidation of Trp. After pico-injection of a biosensing ensemble consisting of the macrocycle cucurbit [8]uril (Q8) and a fluorescent guest, rapid and robust screening of tumor cells by fluorescence signal is achieved in a few minutes reporting to Trp depletion, expanding the scope of conventional antibody-based detection of protein biomarkers. The results represent the first example of quantifying IDO1 enzymatic activity at the single cell level with a high-throughput performance, therefore promising warning signs and early diagnosis of tumor cells.


Subject(s)
Neoplasms , Tryptophan , Humans , Tryptophan/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Tryptophan Oxygenase , Neoplasms/diagnosis , Oxidation-Reduction , Kynurenine/metabolism
6.
J Agric Food Chem ; 70(43): 13849-13861, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36268795

ABSTRACT

Cuticular wax ubiquitously covers the outer layer of plants and protects them against various abiotic and biotic stresses. Nevertheless, the characteristics of cuticular wax and its role in cold resistance in tea plants remain unclear. In our study, cuticular wax from different tissues, cultivars, and leaves during different spatio-temporal growth stages were characterized and compared in tea plants. The composition, distribution pattern, and structural profile of cuticular wax showed considerable tissue specificity, particularly in petals and seeds. During the spatial development of tea leaves, total wax content increased from the first to fifth leaf in June, while a decreasing pattern was observed in September. Additionally, the total wax content and number of wax compounds were enhanced, and the wax composition significantly varied with leaf growth from June to September. Ten cultivars showed considerable differences in total wax content and composition, such as the predominance of saturated fatty acids and primary alcohols in SYH and HJY cultivars, respectively. Correlation analysis suggested that n-hexadecanoic acid is positively related to cold resistance in tea plants. Further transcriptome analysis from cold-sensitive AJBC, cold-tolerant CYQ, and EC 12 cultivars indicated that the inducible expression of wax-related genes was associated with the cold tolerance of different cultivars in response to cold stress. Our results revealed the characterization of cuticular wax in tea plants and provided new insights into its modification in cold tolerance.


Subject(s)
Camellia sinensis , Waxes , Waxes/chemistry , Temperature , Camellia sinensis/chemistry , Plant Leaves/chemistry , Tea/metabolism , Gene Expression Regulation, Plant
7.
J Mol Graph Model ; 109: 108027, 2021 12.
Article in English | MEDLINE | ID: mdl-34534891

ABSTRACT

Aß42 peptides can form helix and sheet structure under different conditions. The conformational conversion is closely associated with Aß peptides aggregation and their neurotoxicity. But the transition from helix to sheet is not be clearly understood. In this study we performed microsecond timescale MD simulations of Aß42 peptide to investigate the conformation transition from α-helix to ß-sheet. Markov state model (MSM) was built to facilitate identification of crucial intermediate states and possible transition pathway. Based on the analysis, we found that the region Y10-A21 in the middle of Aß42 peptide plays an initial role in this transition. MSM model revealed that the collapse of helical structure in this region might trigger the formation of sheet structure. Moreover, we further simulated the aggregation of Aß42 peptides with different conformations. We found that the Aß42 peptides forming sheet structure have higher aggregation potential compared with peptides with helix structure. These results demonstrate that we can prevent the aggregation of Aß42 peptides by stabilizing the helix structure in the region of Y10-A21. In addition, this study provides new insight into better understanding the conformational transition and aggregation of Aß42 peptides.


Subject(s)
Amyloid beta-Peptides , Molecular Dynamics Simulation , Peptide Fragments , Protein Conformation, alpha-Helical
8.
Small ; 17(8): e2007426, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33480481

ABSTRACT

Despite the vast variety of colloidal superstructures available in soft matter photonics, it remains challenging to balance the trade-off between their optical microstructures and material processability. By synergizing colloidal photonics and dynamic chemistry, a type of photonic "plasticine" with characteristics of uniform structural colors, high processability, and self-healing is demonstrated. Specifically, a boronate ester bond-based macromonomer is first prepared through complexation between the diols of polyvinyl alcohol and the boronic acid group of 3-(acrylamido) phenylboronic acid in the presence of concentrated silica colloids. Upon photopolymerization, the dynamic photonic plasticine is formed in situ as the result of the crosslinking of the boronate ester bonded networks. The randomly packed colloids inside the plasticine compose the amorphous photonic crystals, giving rise to angle-independent structural colors that would not compromise during subsequent processing steps; the reversible nature of the boronate ester bonds endows the plasticine with self-adaptable and self-healing properties. Further, the plasticine is also compatible with common shaping methods, that is, cutting, molding, and carving, and thus can be facilely processed into 3D structural colored objects, holding great potentials in fields such as bio-encoding, optical filters, anti-counterfeiting, etc.

9.
Anal Chem ; 91(23): 14943-14950, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31714063

ABSTRACT

We show how the macrocyclic host cucurbit[8]uril (CB[8]) and a fluorescent dye form a biosensing ensemble while its cavity simultaneously traps tryptophan, the upstream substrate of IDO1 enzymes, therefore providing a label-free method to monitor the activity of IDO1 in real time. Incubation of malignant HeLa and HepG2 cells overexpressing IDO1 with the associative biosensor resulted in its spontaneous uptake and a fluorescence switch-on response in situ, which can be traced to the displacement of tryptophan from CB[8] upon IDO1-catalyzed oxidation. The results, for the first time, establish a supramolecular sensing concept for the detection of intracellular enzymatic activity in live cells, thus allowing direct cell-based analysis and inhibitor screening compatible with commercial instruments including microplate reader, fluorescent microscopy, and flow cytometry.


Subject(s)
Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis , Biosensing Techniques/instrumentation , Bridged-Ring Compounds/chemistry , Cell Line, Tumor , HeLa Cells , Hep G2 Cells , Humans , Imidazoles/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Oxidation-Reduction , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...