Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.043
Filter
1.
Int J Biol Macromol ; : 133522, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945325

ABSTRACT

A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the ß-O-4, ß-ß and ß-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.

2.
Zool Res ; 45(4): 781-790, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38894521

ABSTRACT

Precise targeting of specific regions within the central nervous system (CNS) is crucial for both scientific research and gene therapy in the context of brain diseases. Adeno-associated virus 13 (AAV13) is known for its restricted diffusion range within the CNS, making it an ideal choice for precise labeling and administration within small brain regions. However, AAV13 mediates relatively low expression of target genes. Here, we introduced specifically engineered modifications to the AAV13 capsid protein to enhance its transduction efficiency. We first constructed AAV13-YF by mutating tyrosine to phenylalanine on the surface of the AAV13 capsid. We then inserted the 7m8 peptide, known to enhance cell transduction, into positions 587/588 and 585/586 of the AAV13 capsid, resulting in two distinct variants named AAV13-587-7m8 and AAV13-585-7m8, respectively. We found that AAV13-YF exhibited superior in vitro infectivity in HEK293T cells compared to AAV13, while AAV13-587-7m8 and AAV13-585-7m8 showed enhanced CNS infection capabilities in C57BL/6 mice, with AAV13-587-7m8 infection retaining a limited spread range. These modified AAV13 variants hold promising potential for applications in gene therapy and neuroscience research.


Subject(s)
Dependovirus , Mice, Inbred C57BL , Dependovirus/genetics , Animals , Humans , Mice , HEK293 Cells , Transduction, Genetic , Capsid Proteins/genetics , Capsid Proteins/metabolism
3.
Clin Immunol ; : 110293, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936523

ABSTRACT

Patients with caspase-associated recruitment domain-9 (CARD9) deficiency are more likely to develop invasive fungal disease that affect CNS. However, the understanding of how Candida invades and persists in CNS is still limited. We here reported a 24-year-old woman who were previously immunocompetent and diagnosed with CNS candidiasis. A novel autosomal recessive homozygous CARD9 mutation (c.184 + 5G > T) from this patient was identified using whole genomic sequencing. Furthermore, we extensively characterized the impact of this CARD9 mutation on the host immune response in monocytes, neutrophils and CD4 + T cells, using single cell sequencing and in vitro experiments. Decreased pro-inflammatory cytokine productions of CD14 + monocyte, impaired Th17 cell differentiation, and defective neutrophil accumulation in CNS were found in this patient. In conclusion, this study proposed a novel mechanism of CNS candidiasis development. Patients with CNS candidiasis in absence of known immunodeficiencies should be analyzed for CARD9 gene mutation as the cause of invasive fungal infection predisposition.

5.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826297

ABSTRACT

Cell type specific (CTS) analysis is essential to reveal biological insights obscured in bulk tissue data. However, single-cell (sc) or single-nuclei (sn) resolution data are still cost-prohibitive for large-scale samples. Thus, computational methods to perform deconvolution from bulk tissue data are highly valuable. We here present EPIC-unmix, a novel two-step empirical Bayesian method integrating reference sc/sn RNA-seq data and bulk RNA-seq data from target samples to enhance the accuracy of CTS inference. We demonstrate through comprehensive simulations across three tissues that EPIC-unmix achieved 4.6% - 109.8% higher accuracy compared to alternative methods. By applying EPIC-unmix to human bulk brain RNA-seq data from the ROSMAP and MSBB cohorts, we identified multiple genes differentially expressed between Alzheimer's disease (AD) cases versus controls in a CTS manner, including 57.4% novel genes not identified using similar sample size sc/snRNA-seq data, indicating the power of our in-silico approach. Among the 6-69% overlapping, 83%-100% are in consistent direction with those from sc/snRNA-seq data, supporting the reliability of our findings. EPIC-unmix inferred CTS expression profiles similarly empowers CTS eQTL analysis. Among the novel eQTLs, we highlight a microglia eQTL for AD risk gene AP3B2, obscured in bulk and missed by sc/snRNA-seq based eQTL analysis. The variant resides in a microglia-specific cCRE, forming chromatin loop with AP3B2 promoter region in microglia. Taken together, we believe EPIC-unmix will be a valuable tool to enable more powerful CTS analysis.

6.
J Med Case Rep ; 18(1): 295, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890660

ABSTRACT

BACKGROUND: Patients with coronavirus disease 2019 have a high incidence of thrombosis that decreases after recovery. When coronavirus disease 2019 is accompanied by diseases prone to thrombosis, risk of post-infection thrombotic events may increase. CASE PRESENTATION: We report a case of digital ischemic gangrene in a 24-year-old Chinese female with systemic lupus erythematosus after recovery from coronavirus disease 2019. The pathogenesis was related to clinical characteristics of systemic lupus erythematosus, hypercoagulability caused by coronavirus disease 2019, and second-hit due to viral infection. CONCLUSION: Patients with autoimmune diseases should remain alert to autoimmune system disorders induced by severe acute respiratory syndrome coronavirus 2 and other viruses. Treatment for these patients should be strictly standardized, and appropriate anticoagulation methods should be selected to prevent thrombosis.


Subject(s)
COVID-19 , Gangrene , Ischemia , Lupus Erythematosus, Systemic , Humans , Female , COVID-19/complications , Lupus Erythematosus, Systemic/complications , Young Adult , Ischemia/etiology , Gangrene/etiology , Fingers/pathology , Fingers/blood supply , SARS-CoV-2 , Necrosis , Anticoagulants/therapeutic use
7.
Thromb J ; 22(1): 47, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840142

ABSTRACT

OBJECTIVE: To compare the predictive efficacy of the PADUA and Caprini models for pulmonary embolism (PE) in gynecological inpatients, analyze the risk factors for PE, and validate whether both models can effectively predict mortality rates. METHODS: A total of 355 gynecological inpatients who underwent computed tomography pulmonary angiography (CTPA) were included in the retrospective analysis. The comparative assessment of the predictive capabilities for PE between the PADUA and Caprini was carried out using receiver operating characteristic (ROC) curves. Logistic regression analysis was used to identify risk factors associated with PE. Additionally, Kaplan-Meier survival analysis plots were generated to validate the predictive efficacy for mortality rates. RESULTS: Among 355 patients, the PADUA and Caprini demonstrated the area under the curve (AUC) values of 0.757 and 0.756, respectively. There was no statistically significant difference in the AUC between the two models (P = 0.9542). Multivariate logistic analysis revealed immobility (P < 0.001), history of venous thromboembolism (VTE) (P = 0.002), thrombophilia (P < 0.001), hormonal treatment (P = 0.022), and obesity (P = 0.019) as independent risk factors for PE. Kaplan-Meier survival analysis demonstrated the reliable predictive efficacy of both the Caprini (P = 0.00051) and PADUA (P = 0.00031) for mortality. ROC for the three- and six-month follow-ups suggested that the Caprini model exhibited superior predictive efficacy for mortality. CONCLUSIONS: The PADUA model can serve as a simple and effective tool for stratifying high-risk gynecological inpatients before undergoing CTPA. The Caprini model demonstrated superior predictive efficacy for mortality rates.

8.
Int J Biol Macromol ; 270(Pt 2): 132459, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763254

ABSTRACT

Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.


Subject(s)
Coleoptera , Gene Expression Regulation, Developmental , Metamorphosis, Biological , Molting , Receptors, Cytoplasmic and Nuclear , Animals , Molting/genetics , Metamorphosis, Biological/genetics , Coleoptera/genetics , Coleoptera/growth & development , Coleoptera/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Larva/genetics , Larva/growth & development , Chitin/metabolism , RNA Interference , Insect Proteins/genetics , Insect Proteins/metabolism , Phylogeny , Ecdysterone/metabolism
9.
Burns Trauma ; 12: tkae004, 2024.
Article in English | MEDLINE | ID: mdl-38817684

ABSTRACT

Background: Extracellular cold-inducible RNA-binding protein (eCIRP) plays a vital role in the inflammatory response during cerebral ischaemia. However, the potential role and regulatory mechanism of eCIRP in traumatic brain injury (TBI) remain unclear. Here, we explored the effect of eCIRP on the development of TBI using a neural-specific CIRP knockout (KO) mouse model to determine the contribution of eCIRP to TBI-induced neuronal injury and to discover novel therapeutic targets for TBI. Methods: TBI animal models were generated in mice using the fluid percussion injury method. Microglia or neuron lines were subjected to different drug interventions. Histological and functional changes were observed by immunofluorescence and neurobehavioural testing. Apoptosis was examined by a TdT-mediated dUTP nick end labelling assay in vivo or by an annexin-V assay in vitro. Ultrastructural alterations in the cells were examined via electron microscopy. Tissue acetylation alterations were identified by non-labelled quantitative acetylation via proteomics. Protein or mRNA expression in cells and tissues was determined by western blot analysis or real-time quantitative polymerase chain reaction. The levels of inflammatory cytokines and mediators in the serum and supernatants were measured via enzyme-linked immunoassay. Results: There were closely positive correlations between eCIRP and inflammatory mediators, and between eCIRP and TBI markers in human and mouse serum. Neural-specific eCIRP KO decreased hemispheric volume loss and neuronal apoptosis and alleviated glial cell activation and neurological function damage after TBI. In contrast, eCIRP treatment resulted in endoplasmic reticulum disruption and ER stress (ERS)-related death of neurons and enhanced inflammatory mediators by glial cells. Mechanistically, we noted that eCIRP-induced neural apoptosis was associated with the activation of the protein kinase RNA-like ER kinase-activating transcription factor 4 (ATF4)-C/EBP homologous protein signalling pathway, and that eCIRP-induced microglial inflammation was associated with histone H3 acetylation and the α7 nicotinic acetylcholine receptor. Conclusions: These results suggest that TBI obviously enhances the secretion of eCIRP, thereby resulting in neural damage and inflammation in TBI. eCIRP may be a biomarker of TBI that can mediate the apoptosis of neuronal cells through the ERS apoptotic pathway and regulate the inflammatory response of microglia via histone modification.

10.
J Pain Res ; 17: 1583-1594, 2024.
Article in English | MEDLINE | ID: mdl-38707266

ABSTRACT

Objective: Moderate-to-severe pain is the most common clinical symptom in patients with hepatocellular carcinoma (HCC).This trial aimed to analyze the clinical efficacy of Transcutaneous electrical acupoint stimulation (TEAS) in patients of HCC with severe pain and provide a reliable reference for optimizing the clinical diagnostic and therapeutic strategies of HCC. Methods: A total of 104 eligible patients were randomly allocated to experimental and control groups in a ratio of 1:1.The treatment was administered for 1 week continuously. Patients in both groups were followed up 1 week after the end of the treatment.The primary outcome measure was the Numerical Rating Scale (NRS) score, whereas the secondary outcome measures included Brief Pain Inventory BPI-Q3, Q4, Q5 scores, analgesic dose, frequency of opioid-induced gastrointestinal side effects, Karnofsky Performance Status (KPS), Quality of Life Scale - Liver Cancer (QOL-LC), and Brief Fatigue Inventory (BFI) scores. Results: The NRS scores of experimental group was significantly lower after treatment and at the follow-up than baseline (average P<0.01), there were also statistical differences between the groups at the above time points (average P<0.01). BPI-Q3, -Q4, and -Q5 scores in the experimental group were decreased after treatment when compared with those before treatment (average P<0.01). Furthermore, there were significant improvements of gastrointestinal side effects, KPS, QOL-LC and BPI in the experimental group after treatment, and the above results were statistically significant compared to the control group. Conclusion: 7-day TEAS treatment can significantly enhance the analgesic effect and maintain for the following week, also reduce the incidence of gastrointestinal side effects caused by opioids, and improve the quality of life of patients with moderate-to-severe HCC-related pain, which has reliable safety and certain clinical promotion value.

11.
Pest Manag Sci ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738474

ABSTRACT

BACKGROUND: MicroRNA (miRNA) pathway genes have been widely reported to participate in several physiological events in insect lifecycles. The cigarette beetle Lasioderma serricorne is an economically important storage pest worldwide. However, the functions of miRNA pathway genes in L. serricorne remain to be clarified. Herein, we investigated the function of molting and reproduction of the miRNA pathway in L. serricorne. RESULTS: LsDicer-1, LsArgonaute-1, LsLoquacious and LsExportin-5 were universally expressed in adults, whereas LsPasha and LsDrosha were mainly expressed in the pupae. The genes presented different patterns in various tissues. Silencing of LsDicer-1, LsArgonaute-1, LsDrosha and LsExportin-5 resulted in a high proportion of wing deformities and molting defects. Silencing of LsDicer-1, LsArgonaute-1, LsPasha and LsLoquacious affected the development of the ovary and the maturation of oocytes, resulting in a significant decrease in fecundity. Further investigation revealed that the decreases in LsDicer-1 and LsArgonaute-1 expression destroyed follicular epithelia and delayed vitellogenesis and oocyte development. In addition, the expression levels of several miRNAs (let-7, let-7-5p, miR-8-3p, miR-8-5p, miR-9c-5p, miR-71, miR-252-5p, miR-277-3p, miR-263b and Novel-miR-50) were decreased significantly after knockdown of these miRNA pathway core genes, indicating that they played important roles in regulating miRNA-mediated gene expression. CONCLUSION: The results indicate that miRNA pathway genes play important roles in the molting, ovarian development and female fecundity of L. serricorne, and thus are potentially suitable target genes for developing an RNAi strategy against a major pest of stored products. © 2024 Society of Chemical Industry.

12.
Discov Oncol ; 15(1): 178, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771435

ABSTRACT

OBJECTIVE: Melanoma, with its high degree of malignancy, stands as one of the most dangerous skin cancers and remains the primary cause of death from skin cancer. With studies demonstrating the potential of traditional Chinese medicine to intervene and treat melanoma, we turned our attention to celastrol. Celastrol is a triterpene compound extracted from the traditional Chinese medicine derived from Tripterygium wilfordii. Previous studies have shown that celastrol exerts inhibitory effects on various malignant tumors, including melanoma. Hence, our goal was to clarify the impact of celastrol on cell viability, apoptosis, and cell cycle progression by elucidating its effects on the PI3K/AKT/mTOR pathway. METHODS: CCK-8 and wound healing assays were used to determine the effect of celastrol on the viability and migration of B16-F10 cells. Changes in cell apoptosis, cell cycle, reactive oxygen species (ROS), and mitochondrial membrane potential were detected by flow cytometry. PI3K/AKT/mTOR pathway proteins and HIF-α mRNA expression in B16-F10 cells were detected by western blotting and qPCR. Moreover, the addition of a PI3K activator demonstrated that celastrol could inhibit the function of B16-F10 cells via the PI3K/AKT/mTOR pathway. RESULTS: Celastrol inhibited the viability and migration of B16-F10 cells. Through the inhibition of the PI3K/AKT/mTOR pathway down-regulates the expression of HIF-α mRNA, thereby causing an increase of ROS in cells and a decrease in the mitochondrial membrane potential to promote cell apoptosis and cell cycle arrest. The inhibitory effect of celastrol on B16-F10 cells was further demonstrated by co-culturing with a PI3K activator. CONCLUSION: Celastrol inhibits the function of B16-F10 cells by inhibiting the PI3K/AKT/mTOR cellular pathway and regulating the expression of downstream HIF-α mRNA.

13.
Mil Med Res ; 11(1): 31, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797843

ABSTRACT

Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration. However, these methods are somewhat limited, constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations. The advent of emerging spatiotemporal multi-omics approaches, encompassing transcriptomics, proteomics, metabolomics, and epigenomics, furnishes comprehensive insights into these intricate molecular dynamics. These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells, tissues, and organs, thereby offering an in-depth understanding of the fundamental mechanisms at play. This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research. It underscores how these methodologies augment our comprehension of molecular dynamics, cellular interactions, and signaling pathways. Initially, the review delineates the foundational principles underpinning these methods, followed by an evaluation of their recent applications within the field. The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field. Indubitably, spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration, thus charting a course toward potential therapeutic innovations.


Subject(s)
Aging , Genomics , Proteomics , Regenerative Medicine , Aging/physiology , Humans , Regenerative Medicine/methods , Regenerative Medicine/trends , Genomics/methods , Proteomics/methods , Metabolomics/methods , Epigenomics/methods , Multiomics
14.
Dermatol Surg ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38809166

ABSTRACT

BACKGROUND: Serial excision remains the most commonly used surgical procedure for treating congenital melanocytic nevus (CMN). It is critical to remove as much of the lesion as possible with each procedure to reduce the number of procedures and to shorten the treatment duration. OBJECTIVE: To investigate the clinical efficacy of W-plasty serial excision for the repair of postoperative CMN defects. METHODS: A retrospective analysis of patients with medium CMN was conducted from April 2018 to March 2022. Treatment options were divided into elliptical serial excision (10 cases) and W-plasty serial excision (10 cases). RESULTS: Follow-up occurred over 6 months. The number of elliptical excision procedures was 2 to 4 (mean 2.9). The scar-to-lesion length ratio was 1.5 to 2.0 (mean 1.7). The mean Vancouver Scar Scale (VSS) score was 5.40 ± 0.42. The number of W-plasty excision procedures was 2 to 3 (mean 2.2). The scar-to-lesion length ratio was 1.2 to 1.5 (mean 1.4). The mean VSS score was 2.70 ± 0.26. W-plasty excision was superior to elliptical excision regarding the number of procedures and the effect on postoperative scars. CONCLUSION: W-plasty serial excision can be considered a suitable option for the excision of medium CMN, leading to excellent results.

15.
Article in English | MEDLINE | ID: mdl-38779755

ABSTRACT

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis, and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared to control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelia Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ level in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.

16.
J Hypertens ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38780161

ABSTRACT

OBJECTIVES: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K+-induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown. METHODS: In this study, we examined the impact of high-K+ intake on renal Na+/K+ transport by determining the expression of major apical Na+ transporters, diuretics responses (as a proxy for specific Na+ transporter function), urinary Na+/K+ excretion, and plasma Na+/K+ concentrations in db/db mice, a model of type 2 diabetes mellitus. RESULTS: Although db/m mice exhibited increased fractional excretion of sodium (FENa) and fractional excretion of potassium (FEK) under high-K+ intake, these responses were largely blunted in db/db mice, suggesting impaired K+-induced natriuresis and kaliuresis in diabetes. Consequently, high-K+ intake increased plasma K+ levels in db/db mice, which could be attributed to the abnormal activity of sodium-hydrogen exchanger 3 (NHE3), sodium-chloride cotransporter (NCC), and epithelial Na+ channel (ENaC), as high-K+ intake could not effectively decrease NHE3 and NCC and increase ENaC expression and activity in the diabetic group. Inhibition of NCC by hydrochlorothiazide could correct the hyperkalemia in db/db mice fed a high-K+ diet, indicating a key role for NCC in K+-loaded diabetic mice. Treatment with metformin enhanced urinary Na+/K+ excretion and normalized plasma K+ levels in db/db mice with a high-K+ diet, at least partially, by suppressing NCC activity. CONCLUSION: Collectively, the impaired K+-induced natriuresis in diabetic mice under high-K+ intake may be primarily attributed to impaired NCC-mediated renal K+ excretion, despite the role of NHE3.

17.
J Am Heart Assoc ; 13(11): e033981, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38818928

ABSTRACT

BACKGROUND: Oxidative stress plays a principal role in the pathogenesis of white matter hyperintensities (WMHs). The induction of heme oxygenase-1 (HO-1) gene in the brain represents 1 of the pivotal mechanisms to counteract the noxious effects of reactive oxygen species, and the transcriptional modulation of HO-1 induction depends on the length of a GT-repeat (GT)n in the promoter region. We investigated whether the HO-1 gene (GT)n polymorphism is associated with the risk of WMHs. METHODS AND RESULTS: A total of 849 subjects from the memory clinic were consecutively enrolled, and the HO-1 (GT)n genotype was determined. WMHs were assessed with the Fazekas scale and further divided into periventricular WMHs and deep WMHs (DWMHs). Allelic HO-1 (GT)n polymorphisms were classified as short (≤24 (GT)n), median (25≤[GT]n<31), or long (31≤[GT]n). Multivariate logistic regression analysis was used to evaluate the effect of the HO-1 (GT)n variants on WMHs. The number of repetitions of the HO-1 gene (GT)n ranged from 15 to 39 with a bimodal distribution at lengths 23 and 30. The proportion of S/S genotypes was higher for moderate/severe DWMHs than none/mild DWMHs (22.22% versus 12.44%; P=0.001), but the association for periventricular WMHs was not statistically significant. Logistic regression suggested that the S/S genotype was significantly associated with moderate/severe DWMHs (S/S versus non-S/S: odds ratio, 2.001 [95% CI, 1.323-3.027]; P<0.001). The HO-1 gene (GT)n S/S genotype and aging synergistically contributed to the progression of DWMHs (relative excess risk attributable to interaction, 6.032 [95% CI, 0.149-11.915]). CONCLUSIONS: Short (GT)n variants in the HO-1 gene may confer susceptibility to rather than protection from DWMHs, but not periventricular WMHs. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2100045869.


Subject(s)
Genetic Predisposition to Disease , Heme Oxygenase-1 , Humans , Heme Oxygenase-1/genetics , Male , Female , Aged , Middle Aged , Polymorphism, Genetic , White Matter/diagnostic imaging , White Matter/pathology , Risk Factors , Magnetic Resonance Imaging , Promoter Regions, Genetic , Leukoencephalopathies/genetics , Leukoencephalopathies/diagnostic imaging , Phenotype
18.
J Inorg Biochem ; 257: 112585, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718498

ABSTRACT

Ruthenium complexes are one of the most promising anticancer drugs and ferroptosis is a novel form of regulated cell death, the study on the effect of Ru complexes on ferroptosis is helpful to find more effective antitumor drugs. Here, the synthesis and characterization of two Ru complexes containing 8-hydroxylquinoline and triphenylphosphine as ligands, [Ru(L1) (PPh3)2Cl2] (Ru-1), [Ru(L2) (PPh3)2Cl2] (Ru-2), were reported. Complexes Ru-1 âˆ¼ Ru-2 showed good anticancer activity in Hep-G2 cells. Researches indicated that complexes Ru-1 âˆ¼ Ru-2 could be enriched and appear as red fluorescence in the mitochondria, arouse dysfunction of mitochondria, induce the accumulation of reactive oxygen species (ROS) and lipid peroxidation (LPO), while the morphology of nuclei and cell apoptosis had no significant change. Further experiments proved that GPX4 and Ferritin were down-regulated, which eventually triggered ferroptosis in Hep-G2 cells. Remarkably, Ru-1 showed high inhibitory activity against xenograft tumor growth in vivo (TGIR = 49%). This study shows that the complex Ru-1 could act as a novel drug candidate by triggering cell ferroptosis.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ferroptosis , Mitochondria , Ruthenium , Ferroptosis/drug effects , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Ruthenium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Hep G2 Cells , Reactive Oxygen Species/metabolism , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Mice, Nude , Xenograft Model Antitumor Assays , Oxyquinoline/chemistry , Oxyquinoline/pharmacology , Lipid Peroxidation/drug effects , Mice, Inbred BALB C
19.
Research (Wash D C) ; 7: 0347, 2024.
Article in English | MEDLINE | ID: mdl-38576863

ABSTRACT

Utilizing renewable lignocellulosic resources for wastewater remediation is crucial to achieving sustainable social development. However, the resulting by-products and the synthetic process characterized by complexity, high cost, and environmental pollution limit the further development of lignocellulose-based materials. Here, we developed a sustainable strategy that involved a new functional deep eutectic solvent (DES) to deconstruct industrial xylose residue into cellulose-rich residue with carboxyl groups, lignin with carboxyl and quaternary ammonium salt groups, and DES effluent rich in lignin fragments. Subsequently, these fractions equipped with customized functionality were used to produce efficient wastewater remediation materials in cost-effective and environmentally sound manners, namely, photocatalyst prepared by carboxyl-modified cellulose residue, biochar-based adsorbent originated from modified lignin, and flocculant synthesized by self-catalytic in situ copolymerization of residual DES effluent at room temperature. Under the no-waste principle, this strategy upgraded the whole components of waste lignocellulose into high-value-added wastewater remediation materials with excellent universality. These materials in coordination with each other can stepwise purify high-hazardous mineral processing wastewater into drinkable water, including the removal of 99.81% of suspended solids, almost all various heavy metal ions, and 97.09% chemical oxygen demand, respectively. This work provided promising solutions and blueprints for lignocellulosic resources to alleviate water shortages while also advancing the global goal of carbon neutrality.

20.
Int Urol Nephrol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578391

ABSTRACT

PURPOSE: The purpose of the study was to explore the predictive value of free triiodothyronine to free thyroxine ratio (FT3/FT4) on contrast-associated acute kidney injury (CA-AKI) and poor prognosis in euthyroid patients after percutaneous coronary intervention (PCI). METHODS: The present study included 3,116 euthyroid patients who underwent elective PCI. The main outcome was CA-AKI, and the secondary outcome was long-term mortality. All patients were divided into three groups according to the tertiles of FT3/FT4 levels. RESULTS: During hospitalization, a total of 160 cases (5.1%) of CA-AKI occurred. Restricted cubic spline (RCS) analysis indicated a linear and negative relationship between FT3/FT4 and CA-AKI risk (P for nonlinearity = 0.2621). Besides, the fully-adjusted logistic regression model revealed that patients in tertile 3 (low FT3/FT4 group) had 1.82 times [odds ratio (OR): 1.82, 95% confidence interval (CI): 1.13-3.02, P = 0.016] as high as the risk of CA-AKI than those in tertile 1 (high FT3/FT4 group). Similarly, patients in tertile 3 were observed to have a higher incidence of long-term mortality [fully-adjusted hazard ratio (HR): 1.58, 95% CI: 1.07-2.32, P = 0.021]. Similarly, the Kaplan-Meier curves displayed significant differences in long-term mortality among the three groups (log-rank test, P < 0.001). CONCLUSION: In euthyroid patients undergoing elective PCI, low levels of FT3/FT4 were independently associated with an increased risk of CA-AKI and long-term mortality. Routine evaluation of FT3/FT4 may aid in risk stratification and guide treatment decisions within this particular patient group.

SELECTION OF CITATIONS
SEARCH DETAIL
...