Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37896485

ABSTRACT

In order to improve the real-time performance of the trajectory tracking of autonomous vehicles, this paper applies the alternating direction multiplier method (ADMM) to the receding optimization of model predictive control (MPC), which improves the computational speed of the algorithm. Based on the vehicle dynamics model, the output equation of the autonomous vehicle trajectory tracking control system is constructed, and the auxiliary variable and the dual variable are introduced. The quadratic programming problem transformed from the MPC and the vehicle dynamics constraints are rewritten into the solution of the ADMM form, and a decreasing penalty factor is used during the solution process. The simulation verification is carried out through the joint simulation platform of Simulink and Carsim. The results show that, compared with the active set method (ASM) and the interior point method (IPM), the algorithm proposed in this paper can not only improve the accuracy of trajectory tracking, but also exhibits good real-time performance in different prediction time domains and control time domains. When the prediction time domain increases, the calculation time shows no significant difference. This verifies the effectiveness of the ADMM in improving the real-time performance of MPC.

2.
Soft comput ; : 1-27, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37362267

ABSTRACT

Locating the propagation source is one of the most important strategies to control the harmful diffusion process on complex networks. Most existing methods only consider the infection time information of the observers, but the diffusion direction information of the observers is ignored, which is helpful to locate the source. In this paper, we consider both of the diffusion direction information and the infection time information to locate the source. We introduce a relaxed direction-induced search (DIS) to utilize the diffusion direction information of the observers to approximate the actual diffusion tree on a network. Based on the relaxed DIS, we further utilize the infection time information of the observers to define two kinds of observers-based similarity measures, including the Infection Time Similarity and the Infection Time Order Similarity. With the two kinds of similarity measures and the relaxed DIS, a novel source locating method is proposed. We validate the performance of the proposed method on a series of synthetic and real networks. The experimental results show that the proposed method is feasible and effective in accurately locating the propagation source.

SELECTION OF CITATIONS
SEARCH DETAIL
...