Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 235: 126438, 2020 May.
Article in English | MEDLINE | ID: mdl-32088504

ABSTRACT

Acetoin (3-hydroxy-2-butanone) is an important physiological metabolic product in many microorganisms. Acetoin breakdown is catalyzed by the acetoin dehydrogenase enzyme system (AoDH ES), which is encoded by acoABCL operon. In this study, we analyzed transcription and regulation of the aco operon in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that acoABCL forms one transcriptional unit. The Sigma 54 controlled consensus sequence was located 12 bp from the acoA transcriptional start site (TSS). ß-galactosidase assay revealed that aco operon transcription is induced by acetoin, controlled by sigma 54, and positively regulated by AcoR. The HTH domain of AcoR recognized and specifically bound to a 13-bp inverted repeat region that participates in 30-bp fragment mapping 81 bp upstream of the acoA TSS. The GAF domain in AcoR represses enhancer transcriptional activity at the acoA promoter. Transcriptions of the aco operon and acoR were repressed by glucose via CcpA, and CcpA specifically bound to sequences within the acoR promoter fragment. In the acoABCL and acoR mutants, acetoin use was abolished, suggesting that the aco operon is essential for utilization of acetoin. The data presented here improve our understanding of the regulation of the aco gene cluster in bacteria.


Subject(s)
Acetoin/metabolism , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Multigene Family , Transcription, Genetic , Bacillus thuringiensis/metabolism , Metabolic Networks and Pathways/genetics , Operon
SELECTION OF CITATIONS
SEARCH DETAIL
...