Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Biomaterials ; 309: 122613, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759485

ABSTRACT

Vascular restenosis following angioplasty continues to pose a significant challenge. The heterocyclic trioxirane compound [1, 3, 5-tris((oxiran-2-yl)methyl)-1, 3, 5-triazinane-2, 4, 6-trione (TGIC)], known for its anticancer activity, was utilized as the parent ring to conjugate with a non-steroidal anti-inflammatory drug, resulting in the creation of the spliced conjugated compound BY1. We found that BY1 induced ferroptosis in VSMCs as well as in neointima hyperplasia. Furthermore, ferroptosis inducers amplified BY1-induced cell death, while inhibitors mitigated it, indicating the contribution of ferroptosis to BY1-induced cell death. Additionally, we established that ferritin heavy chain1 (FTH1) played a pivotal role in BY1-induced ferroptosis, as evidenced by the fact that FTH1 overexpression abrogated BY1-induced ferroptosis, while FTH1 knockdown exacerbated it. Further study found that BY1 induced ferroptosis by enhancing the NCOA4-FTH1 interaction and increasing the amount of intracellular ferrous. We compared the effectiveness of various administration routes for BY1, including BY1-coated balloons, hydrogel-based BY1 delivery, and nanoparticles targeting OPN loaded with BY1 (TOP@MPDA@BY1) for targeting proliferated VSMCs, for prevention and treatment of the restenosis. Our results indicated that TOP@MPDA@BY1 was the most effective among the three administration routes, positioning BY1 as a highly promising candidate for the development of drug-eluting stents or treatments for restenosis.


Subject(s)
Ferroptosis , Muscle, Smooth, Vascular , Nanoparticles , Ferroptosis/drug effects , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Humans , Nanoparticles/chemistry , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Male , Mice , Mice, Inbred C57BL , Oxidoreductases/metabolism , Ferritins
5.
Cell Death Differ ; 30(12): 2462-2476, 2023 12.
Article in English | MEDLINE | ID: mdl-37845385

ABSTRACT

Cyclin-dependent kinases (CDKs) regulate cell cycle progression and the transcription of a number of genes, including lipid metabolism-related genes, and aberrant lipid metabolism is involved in prostate carcinogenesis. Previous studies have shown that CDK13 expression is upregulated and fatty acid synthesis is increased in prostate cancer (PCa). However, the molecular mechanisms linking CDK13 upregulation and aberrant lipid metabolism in PCa cells remain largely unknown. Here, we showed that upregulation of CDK13 in PCa cells increases the fatty acyl chains and lipid classes, leading to lipid deposition in the cells, which is positively correlated with the expression of acetyl-CoA carboxylase (ACC1), the first rate-limiting enzyme in fatty acid synthesis. Gain- and loss-of-function studies showed that ACC1 mediates CDK13-induced lipid accumulation and PCa progression by enhancing lipid synthesis. Mechanistically, CDK13 interacts with RNA-methyltransferase NSUN5 to promote its phosphorylation at Ser327. In turn, phosphorylated NSUN5 catalyzes the m5C modification of ACC1 mRNA, and then the m5C-modified ACC1 mRNA binds to ALYREF to enhance its stability and nuclear export, thereby contributing to an increase in ACC1 expression and lipid deposition in PCa cells. Overall, our results disclose a novel function of CDK13 in regulating the ACC1 expression and identify a previously unrecognized CDK13/NSUN5/ACC1 pathway that mediates fatty acid synthesis and lipid accumulation in PCa cells, and targeting this newly identified pathway may be a novel therapeutic option for the treatment of PCa.


Subject(s)
Acetyl-CoA Carboxylase , Prostatic Neoplasms , Humans , Male , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , CDC2 Protein Kinase , Fatty Acids , Lipids , Methyltransferases , Muscle Proteins , Prostate/metabolism , Prostatic Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Adv Sci (Weinh) ; 10(28): e2300560, 2023 10.
Article in English | MEDLINE | ID: mdl-37590310

ABSTRACT

Epidemiological studies show an association between inflammatory bowel disease (IBD) and increased risk of thrombosis. However, how IBD influences thrombosis remains unknown. The current study shows that formation of neutrophil extracellular traps (NETs) significantly increased in the dextran sulfate sodium (DSS)-induced IBD mice, which in turn, contributes to thrombus formation in a NETs-dependent fashion. Furthermore, the exosomes isolated from the plasma of the IBD mice induce arterial and venous thrombosis in vivo. Importantly, proinflammatory factors-exposed intestinal epithelial cells (inflamed IECs) promote neutrophils to release NETs through their secreted exosomes. RNA sequencing revealed that LINC00668 is highly enriched in the inflamed IECs-derived exosomes. Mechanistically, LINC00668 facilitates the translocation of neutrophil elastase (NE) from the cytoplasmic granules to the nucleus via its interaction with NE in a sequence-specific manner, thereby inducing NETs release and thrombus formation. Importantly, berberine (BBR) suppresses the nuclear translocation of NE and subsequent NETs formation by inhibiting the interaction of LINC00668 with NE, thus exerting its antithrombotic effects. This study provides a novel pathobiological mechanism linking IBD and thrombosis by exosome-mediated NETs formation. Targeting LINC00668 can serve as a novel molecular treatment strategy to treat IBD-related thrombosis.


Subject(s)
Exosomes , Extracellular Traps , Inflammatory Bowel Diseases , Thrombosis , Animals , Mice , Thrombosis/etiology , Neutrophils
7.
J Geriatr Cardiol ; 20(6): 431-447, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37416515

ABSTRACT

BACKGROUND: Abnormal type I collagen (COL1) expression is associated with the development of many cardiovascular diseases. The TGF-beta/Smad signaling pathway and circRNAs have been shown to regulate COL1 gene expression, but the underlying molecular mechanisms are still not fully understood. METHODS: Gain- and loss-of-function experiments were prformed to study the effect of circZBTB46 on the expression of alpha 2 chain of type I collagen (COL1A2). Co-immunoprecipitation assay was performed to observe the interaction between two proteins. RNA immunoprecipitation assay and biotin pull-down assay were performed to observe the interaction of circZBTB46 with PDLIM5. RESULTS: In this study, we investigated the role of circZBTB46 in regulating COL1A2 expression in human vascular smooth muscle cells (VSMCs). We found that circZBTB46 is expressed in VSMCs and that TGF-beta inhibits circZBTB46 formation by downregulating KLF4 expression through activation of the Smad signaling pathway. CircZBTB46 inhibits the expression of COL1A2 induced by TGF-beta. Mechanistically, circZBTB46 mediates the interaction between Smad2 and PDLIM5, resulting in the inhibition of Smad signaling and the subsequent downregulation of COL1A2 expression. Furthermore, we found that the expression of TGF-beta and COL1A2 is decreased, while circZBTB46 expression is increased in human abdominal aortic aneurysm tissues, indicating that circZBTB46-mediated regulation of TGF-beta/Smad signaling and COL1A2 synthesis in VSMCs plays a crucial role in vascular homeostasis and aneurysm development. CONCLUSIONS: CircZBTB46 was identified as a novel inhibitor of COL1 synthesis in VSMCs, highlighting the importance of circZBTB46 and PDLIM5 in regulating TGF-beta/Smad signaling and COL1A2 expression.

8.
Cell Death Dis ; 14(1): 26, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639679

ABSTRACT

Splicing factor 3B subunit 4 (SF3B4) plays important functional roles not only in pre-mRNA splicing, but also in the regulation of transcription, translation, and cell signaling, and its dysregulation contributes to various diseases including Nager syndrome and tumorigenesis. However, the role of SF3B4 and underlying mechanisms in clear cell renal cell carcinoma (ccRCC) remain obscure. In the present study, we found that the expression of SF3B4 was significantly elevated in ccRCC tissues and negatively correlated with the overall survival of ccRCC patients. Upregulation of SF3B4 promotes migration and invasion of ccRCC cells in vitro and in vivo. The promoting effect of SF3B4 on cell migration and invasion is mediated by Twist1, a key transcription factor to mediate EMT. Interestingly, SF3B4, a component of the pre-mRNA spliceosome, is able to promote KLF16 expression by facilitating the transport of KLF16 mRNA into the cytoplasm. Mechanistically, SF3B4 promotes the export of KLF16 mRNA from the nucleus to the cytoplasm and thus enhances KLF16 expression, and in turn elevated KLF16 directly binds to the Twist1 promoter to activate its transcription, leading to EMT and ccRCC progression. Our findings provide evidence that the SF3B4-KLF16-Twist1 axis plays important functional roles in the development and progression of ccRCC, and manipulating this pathway may be a novel therapeutic target for the treatment of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , RNA Precursors/metabolism , RNA, Messenger/genetics , Cytoplasm/metabolism , Cell Line, Tumor , Kidney Neoplasms/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Kruppel-Like Transcription Factors/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
9.
FASEB J ; 36(11): e22602, 2022 11.
Article in English | MEDLINE | ID: mdl-36250925

ABSTRACT

Chronic inflammation is one of the definite factors leading to the occurrence and development of tumors, including prostate cancer (PCa). The androgen receptor (AR) pathway is essential for PCa tumorigenesis and inflammatory response. However, little is known about the AR-regulated NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome pathway in human PCa. In this study, we explored the expression of inflammatory cytokine and AR in high-grade PCa and observed that NLRP3 inflammasome-associated genes were upregulated in high-grade PCa compared with that in low-grade PCa and benign prostatic hyperplasia and were associated with AR expression. In addition, we identified circAR-3-a circRNA derived from the AR gene-which is involved in the AR-regulated inflammatory response and cell proliferation by activating the NLRP3 inflammatory pathway. While circAR-3 overexpression promoted cell proliferation and the inflammatory response, its depletion induced opposite effects. Mechanistically, we noted that circAR-3 mediated the acetylation modification of NLRP3 by KAT2B and then promoted NLRP3 inflammasome complex subcellular distribution and assembly. Disturbing NLRP3 acetylation or blocking inflammasome assembly with an inhibitor suppressed the progression of PCa xenograft tumors. Our findings provide the first evidence that targeting NLRP3 acetylation or inflammasome assembly may be effective in inhibiting PCa progression.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Acetylation , Cytokines/metabolism , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Male , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prostatic Neoplasms/metabolism , RNA, Circular , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
11.
J Adv Res ; 39: 103-117, 2022 07.
Article in English | MEDLINE | ID: mdl-35777901

ABSTRACT

INTRODUCTION: Hypoxia-inducible factor (HIF)1α has been shown to be activated and induces a glycolytic shift under hypoxic condition, however, little attention was paid to the role of HIF1α-actuated fructolysis in hypoxia-induced heart injury. OBJECTIVES: In this study, we aim to explore the molecular mechanisms of miR-155-mediated fructose metabolism in hypoxic cardiac fibroblasts (CFs). METHODS: Immunostaining, western blot and quantitative real-time reverse transcription PCR (qRT-PCR) were performed to detect the expression of glucose transporter 5 (GLUT5), ketohexokinase (KHK)-A and KHK-C in miR-155-/- and miR-155wt CFs under normoxia or hypoxia. A microarray analysis of circRNAs was performed to identify circHIF1α. Then CoIP, RIP and mass spectrometry analysis were performed and identified SKIV2L2 (MTR4) and transformer 2 alpha (TRA2A), a member of the transformer 2 homolog family. pAd-SKIV2L2 was administrated after coronary artery ligation to investigate whether SKIV2L2 can provide a protective effect on the infarcted heart. RESULTS: When both miR-155-/- and miR-155wt CFs were exposed to hypoxia for 24 h, these two cells exhibited an increased glycolysis and decreased glycogen synthesis, and the expression of KHK-A and KHK-C, the central fructose-metabolizing enzyme, was upregulated. Mechanistically, miR-155 deletion in CFs enhanced SKIV2L2 expression and its interaction with TRA2A, which suppresses the alternative splicing of HIF1α pre-mRNA to form circHIF1α, and then decreased circHIF1α contributed to the activation of fructose metabolism through increasing the production of the KHK-C isoform. Finally, exogenous delivery of SKIV2L2 reduced myocardial damage in the infarcted heart. CONCLUSION: In this study, we demonstrated that miR-155 deletion facilitates the activation of fructose metabolism in hypoxic CFs through regulating alternative splicing of HIF1α pre-mRNA and thus circHIF1ɑ formation.


Subject(s)
Fructose , MicroRNAs , Myocardial Infarction , Down-Regulation , Fibroblasts/metabolism , Fibroblasts/pathology , Fructose/metabolism , Humans , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocardium/pathology , RNA Precursors/metabolism
13.
Front Cardiovasc Med ; 8: 768662, 2021.
Article in English | MEDLINE | ID: mdl-34917665

ABSTRACT

Background: Intimal hyperplasia is a major complication of restenosis after angioplasty. The abnormal proliferation and oxidative stress of vascular smooth muscle cells (VSMCs) are the basic pathological feature of neointimal hyperplasia. 17ß-Estradiol can inhibit VSMCs proliferation and inflammation. However, it is still unclear whether and how 17ß-Estradiol affects intimal hyperplasia. Methods: The neointima hyperplasia was observed by hematoxylin/eosin staining. The expression of PCNA, cyclin D1, NOX1, NOX4 and p47phox in neointima hyperplasia tissues and VSMCs was determined by qRT-PCR and Western blotting. MTS assay, cell counting and EdU staining were performed to detect cells proliferation. The oxidative stress was assessed by ROS staining. Results: 17ß-Estradiol suppressed carotid artery ligation-induced intimal hyperplasia, which is accompanied by an increase of BHLHE40 level. Furthermore, loss- and gain-of-function experiments revealed that BHLHE40 knockdown promotes, whereas BHLHE40 overexpression inhibits TNF-α-induced VSMC proliferation and oxidative stress. 17ß-Estradiol inhibited TNF-α-induced VSMC proliferation and oxidative stress by promoting BHLHE40 expression, thereby suppressing MAPK signaling pathways. In addition, enforcing the expression of BHLHE40 leads to amelioration of intimal hyperplasia. Conclusions: Our study demonstrates that 17ß-Estradiol inhibits proliferation and oxidative stress in vivo and in vitro by promotion of BHLHE40 expression.

14.
Aging (Albany NY) ; 13(8): 11610-11628, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33885378

ABSTRACT

Chronic angiotensin II (Ang II) stimulation induces vascular smooth muscle cell (VSMC) senescence, and circRNAs and members of the ILF3 family are implicated in cellular senescence, but the mechanism underlying regulation of circRNAs and ILF3 by Ang II in VSMCs remains poorly understood. Here, a model of Ang II-induced VSMC senescence and the renal artery of hypertensive patients were used to investigate the roles and mechanisms of circACTA2 and ILF3 in VSMC senescence. We show that circACTA2 expression was elevated in Ang II-stimulated VSMCs and in the vascular walls of hypertensive patients. circACTA2 knockdown largely abrogated Ang II-induced VSMC senescence as shown by decreased p21 expression and increased CDK4 expression as well as by decreased SA ß-gal-positive cells. Oligo pull-down and RIP assays revealed that both circACTA2 and CDK4 mRNA could bind with ILF3, and Ang II facilitated circACTA2 association with ILF3 and attenuated ILF3 interaction with CDK4 mRNA. Mechanistically, increased circACTA2 by Ang II reduced ILF3 association with CDK4 mRNA by competing with CDK4 mRNA to bind to ILF3, which decreases CDK4 mRNA stability and protein expression, thus leading to Ang II-induced VSMC senescence. Targeting the circACTA2-ILF3-CDK4 axis may provide a novel therapeutic strategy for VSMC senescence-associated cardiovascular diseases.


Subject(s)
Cellular Senescence/genetics , Cyclin-Dependent Kinase 4/genetics , Hypertension/pathology , Nuclear Factor 90 Proteins/metabolism , RNA, Circular/metabolism , Angiotensin II/metabolism , Cell Line , HEK293 Cells , Humans , Myocytes, Smooth Muscle/pathology , RNA, Circular/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism
15.
J Exp Clin Cancer Res ; 40(1): 2, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33390186

ABSTRACT

BACKGROUND: Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. METHODS: The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. RESULTS: Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. CONCLUSIONS: These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


Subject(s)
CDC2 Protein Kinase/metabolism , E2F5 Transcription Factor/metabolism , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , CDC2 Protein Kinase/genetics , Cell Proliferation/physiology , E2F5 Transcription Factor/genetics , Feedback , Female , Humans , Male , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Transfection , Up-Regulation
16.
PLoS Biol ; 18(8): e3000808, 2020 08.
Article in English | MEDLINE | ID: mdl-32817651

ABSTRACT

Although dysregulation of mitochondrial dynamics has been linked to cellular senescence, which contributes to advanced age-related disorders, it is unclear how Krüppel-like factor 5 (Klf5), an essential transcriptional factor of cardiovascular remodeling, mediates the link between mitochondrial dynamics and vascular smooth muscle cell (VSMC) senescence. Here, we show that Klf5 down-regulation in VSMCs is correlated with rupture of abdominal aortic aneurysm (AAA), an age-related vascular disease. Mice lacking Klf5 in VSMCs exacerbate vascular senescence and progression of angiotensin II (Ang II)-induced AAA by facilitating reactive oxygen species (ROS) formation. Klf5 knockdown enhances, while Klf5 overexpression suppresses mitochondrial fission. Mechanistically, Klf5 activates eukaryotic translation initiation factor 5a (eIF5a) transcription through binding to the promoter of eIF5a, which in turn preserves mitochondrial integrity by interacting with mitofusin 1 (Mfn1). Accordingly, decreased expression of eIF5a elicited by Klf5 down-regulation leads to mitochondrial fission and excessive ROS production. Inhibition of mitochondrial fission decreases ROS production and VSMC senescence. Our studies provide a potential therapeutic target for age-related vascular disorders.


Subject(s)
Aortic Aneurysm, Abdominal/genetics , Endothelial Cells/metabolism , Kruppel-Like Transcription Factors/genetics , Mitochondria/metabolism , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Aged , Angiotensin II/genetics , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Aorta/diagnostic imaging , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Cellular Senescence/drug effects , Echocardiography , Endothelial Cells/pathology , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Kruppel-Like Transcription Factors/deficiency , Male , Mice , Mice, Knockout , Mitochondria/pathology , Mitochondrial Dynamics/drug effects , Peptide Initiation Factors/deficiency , Primary Cell Culture , Promoter Regions, Genetic , Protein Binding , Reactive Oxygen Species/metabolism , Eukaryotic Translation Initiation Factor 5A
17.
Theranostics ; 10(17): 7787-7811, 2020.
Article in English | MEDLINE | ID: mdl-32685020

ABSTRACT

Objective: Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are essential for vascular remodeling. Natural compounds with diterpene chinone or phenolic acid structure from Salvia miltiorrhiza, an eminent medicinal herb widely used to treat cardiovascular diseases in China, can effectively attenuate vascular remodeling induced by vascular injury. However, it remains unknown whether Salvia miltiorrhiza-derived miRNAs can protect VSMCs from injury by environmental stimuli. Here, we explored the role and underlying mechanisms of Salvia miltiorrhiza-derived Sal-miR-1 and 3 in the regulation of VSMC migration and monocyte adhesion to VSMCs induced by thrombin. Methods: A mouse model for intimal hyperplasia was established by the ligation of carotid artery and the injured carotid arteries were in situ-transfected with Sal-miR-1 and 3 using F-127 pluronic gel. The vascular protective effects of Sal-miR-1 and 3 were assessed via analysis of intimal hyperplasia with pathological morphology. VSMC migration and adhesion were analyzed by the wound healing, transwell membrane assays, and time-lapse imaging experiment. Using loss- and gain-of-function approaches, Sal-miR-1 and 3 regulation of OTUD7B/KLF4/NMHC IIA axis was investigated by using luciferase assay, co-immunoprecipitation, chromatin immunoprecipitation, western blotting, etc. Results:Salvia miltiorrhiza-derived Sal-miR-1 and 3 can enter the mouse body after intragastric administration, and significantly suppress intimal hyperplasia induced by carotid artery ligation. In cultured VSMCs, these two miRNAs inhibit thrombin-induced the migration of VSMCs and monocyte adhesion to VSMCs. Mechanistically, Sal-miR-1 and 3 abrogate OTUD7B upregulation by thrombin via binding to the different sites of the OTUD7B 3'UTR. Most importantly, OTUD7B downregulation by Sal-miR-1 and 3 attenuates KLF4 protein levels via decreasing its deubiquitylation, whereas decreased KLF4 relieves its repression of transcription of NMHC IIA gene and thus increases NMHC IIA expression levels. Further, increased NMHC IIA represses VSMC migration and monocyte adhesion to VSMCs via maintaining the contractile phenotype of VSMCs. Conclusions: Our studies not only found the novel bioactive components from Salvia miltiorrhiza but also clarified the molecular mechanism underlying Sal-miR-1 and 3 inhibition of VSMC migration and monocyte adhesion to VSMCs. These results add important knowledge to the pharmacological actions and bioactive components of Salvia miltiorrhiza. Sal-miR-1 and 3-regulated OTUD7B/KLF4/NMHC IIA axis may represent a therapeutic target for vascular remodeling.


Subject(s)
MicroRNAs/pharmacology , RNA, Plant/pharmacology , Salvia miltiorrhiza/genetics , Tunica Intima/pathology , Vascular Remodeling/drug effects , Animals , Carotid Arteries/cytology , Carotid Arteries/pathology , Cell Adhesion/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Down-Regulation , Endopeptidases/metabolism , Humans , Hyperplasia/drug therapy , Hyperplasia/pathology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Male , Mice , MicroRNAs/therapeutic use , Monocytes/drug effects , Monocytes/physiology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , Myosin Heavy Chains/metabolism , RNA, Plant/therapeutic use , Signal Transduction/drug effects , Tunica Intima/drug effects
18.
Mol Ther Nucleic Acids ; 21: 492-511, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32679544

ABSTRACT

Autophagy is associated with the cytoprotection of physiological processes against inflammation and oxidative stress. Salvia miltiorrhiza possesses cardiovascular protective actions and has powerful anti-oxidative and anti-inflammatory effects; however, whether and how Salvia miltiorrhiza-derived microRNAs (miRNAs) protect vascular smooth muscle cells (VSMCs) by inducing autophagy across species are unknown. We first screened and identified Sal-miR-58 from Salvia miltiorrhiza as a natural autophagy inducer. Synthetic Sal-miR-58 suppresses chronic angiotensin II (Ang II) infusion-induced abdominal aortic aneurysm (AAA) formation in mice, as well as induces autophagy in VSMCs and attenuates the inflammatory response elicited by Ang II in vivo and in vitro. Mechanistically, Sal-miR-58 downregulates Krüppel-like factor 3 (KLF3) expression through direct binding to the 3' UTR of KLF3, which in turn relieves KLF3 repression of E3 ubiquitin ligase neural precursor cell-expressed developmentally downregulated 4-like (NEDD4L) expression, whereas NEDD4L upregulation increases the ubiquitination and degradation of the platelet isoform of phosphofructokinase (PFKP), subsequently leading to a decrease in the activation of Akt/mammalian target of rapamycin (mTOR) signaling and facilitating VSMC autophagy induced by Sal-miR-58 in the context of chronic Ang II stimulation and aneurysm formation. Our results provide the first evidence that plant-derived Sal-miR-58 induces autophagy and attenuates inflammation in VSMCs through cross-species modulation of the KLF3/NEDD4L/PFKP regulatory pathway.

19.
Eur J Pharmacol ; 880: 173140, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32387370

ABSTRACT

The inflammation and proliferation of vascular smooth muscle cells (VSMCs) are the basic pathological feature of proliferative vascular diseases. Tanshinone ⅡA (Tan ⅡA), which is the most abundant fat-soluble element extracted from Salvia miltiorrhiza, has potent protective effects on the cardiovascular system. However, the underlying mechanism is still not fully understood. Here, we show that Tan ⅡA significantly inhibits neointimal formation and decreases VSMC inflammation by upregulating the expression of KLF4 and inhibiting the activation of NFκB signaling. Using a microRNA array analysis, we found that miR-712-5p expression is significantly upregulated in tumor necrosis factor alpha (TNF-α)-treated VSMCs. Loss- and gain-of-function experiments revealed that transfection of miR-712-5p mimic promotes, whereas depletion of miR-712-5p suppresses TNF-α-induced VSMC inflammation, leading to amelioration of intimal hyperplasia induced by carotid artery ligation. Moreover, depletion of miR-712-5p by its antagomir largely abrogates TNF-α-induced VSMC proliferation. Our findings suggest that miR-712-5p mediates the stimulatory effect of TNF-α on VSMC inflammation, and that Tan ⅡA inhibits VSMC inflammation and proliferation in vivo and in vitro by suppression of miR-712-5p expression. Targeting miR-712-5p may be a novel therapeutic strategy to prevent proliferative vascular diseases.


Subject(s)
Abietanes/pharmacology , Anti-Inflammatory Agents/pharmacology , MicroRNAs , Myocytes, Smooth Muscle/drug effects , Animals , Carotid Arteries/pathology , Cell Line , Cell Proliferation/drug effects , Cytokines/genetics , Cytokines/metabolism , Down-Regulation/drug effects , Hyperplasia/genetics , Hyperplasia/metabolism , Hyperplasia/pathology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Male , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Neointima/genetics , Neointima/metabolism , Neointima/pathology
20.
Am J Transl Res ; 12(12): 8256-8258, 2020.
Article in English | MEDLINE | ID: mdl-33437397

ABSTRACT

[This corrects the article on p. 4778 in vol. 8, PMID: 27904679.].

SELECTION OF CITATIONS
SEARCH DETAIL
...