Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Anal Chem ; : 1-32, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37486769

ABSTRACT

Zinc is a vital metal element with extensive applications in various fields such as industry, metallurgy, agriculture, food, and healthcare. For living organisms, zinc ions are indispensable, and their deficiency can lead to physiological and metabolic abnormalities that cause multiple diseases. Hence, there is a significant need for selective recognition and effective detection of free zinc ions. As a probe method with high sensitivity, high selectivity, real-time monitoring, safety, harmlessness and ease of operation, fluorescent probes have been widely used in metal ion identification studies, and many convenient, low-cost and easy-to-operate fluorescent probes for Zn2+ detection have been developed. This article reviews the latest research advances in fluorescent chemosensors for Zn2+ detection from 2019 to 2023. In particular, sensors working through photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), chelation-enhanced fluorescence (CHEF), and aggregation-induced emission (AIE) mechanisms are described. We discuss the use of various recognition mechanisms in detecting zinc ions through specific cases, some of which have been validated through theoretical calculations.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122123, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36423505

ABSTRACT

The sensing mechanism of the quinoline-derived Schiff base HL (concentrated from 8-hydroxyquinoline with 2,4-dihydroxybenzaldehyde) as a highly selective fluorescent probe for Zn2+ was investigated by theoretical calculations with DFT and TDDFT. The conformations of the HL molecule, its ketone form and its Zinc complex structure, were optimized in the ground and excited states. The systems have been studied in depth in terms of structural parameters, frontier molecular orbitals, absorption and fluorescence spectra as well as potential energy curves analysis and approximately density gradient analysis. The present theoretical calculations propose a different detection mechanism from that proposed experimentally. The theoretical results predict that the fluorescence quenching in HL is attributed to the excited state intramolecular proton transfer (ESIPT) rather than the photoinduced electron transfer (PET) of benzene to electrons. When Zn2+ is introduced, Zn2+ takes the place of the H atom, creating a complex that blocks the ESIPT reaction and restores fluorescence.


Subject(s)
Quinolines , Schiff Bases , Protons , Fluorescence , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...