Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Res Int ; 2021: 6671291, 2021.
Article in English | MEDLINE | ID: mdl-34796234

ABSTRACT

BACKGROUND: With the COVID-19 epidemic breakout in China, up to 25% of diagnosed cases are considered to be severe. To effectively predict the progression of COVID-19 via patients' clinical features at an early stage, the prevalence of these clinical factors and their relationships with severe illness were assessed. METHODS: In this study, electronic databases (PubMed, Embase, Web of Science, and Chinese database) were searched to obtain relevant studies, including information on severe patients. Publication bias analysis, sensitivity analysis, prevalence, sensitivity, specificity, likelihood ratio, diagnosis odds ratio calculation, and visualization graphics were achieved through software Review Manager 5.3, Stata 15, Meta-DiSc 1.4, and R. RESULTS: Data of 3.547 patients from 24 studies were included in this study. The results revealed that patients with chronic respiratory system diseases (pooled positive likelihood 6.07, 95% CI: 3.12-11.82), chronic renal disease (4.79, 2.04-11.25), cardiovascular disease (3.45, 2.19-5.44), and symptoms of the onset of chest tightness (3.8, 1.44-10.05), shortness of breath (3.18, 2.24-4.51), and diarrhea (2.04, 1.38-3.04) exhibited increased probability of progressing to severe illness. C-reactive protein, ratio of neutrophils to lymphocytes, and erythrocyte sedimentation rate increased a lot in severe patients compared to nonsevere. Yet, it was found that clinical features including fever, cough, and headache, as well as some comorbidities, have little warning value. CONCLUSIONS: The clinical features and laboratory examination could be used to estimate the process of infection in COVID-19 patients. The findings contribute to the more efficient prediction of serious illness for patients with COVID-19 to reduce mortality.


Subject(s)
COVID-19/epidemiology , COVID-19/etiology , C-Reactive Protein/analysis , Cardiovascular Diseases/epidemiology , Comorbidity , Cough/virology , Diabetes Mellitus/epidemiology , Female , Fever/virology , Hematologic Tests , Humans , Hypertension/epidemiology , Male , Severity of Illness Index
2.
Front Med (Lausanne) ; 8: 556022, 2021.
Article in English | MEDLINE | ID: mdl-34354999

ABSTRACT

Spinal stenosis is a common disease affecting the elderly that is present in a various forms. Its high incidence forces researchers to pay more attention and offer countermeasures. We used the Web of Science Core collection and PubMed database to obtain 5,606 scientific studies concerning spinal stenosis, and the number of publications maintained a roughly increasing trend from 108 in 2000 to 512 in 2018, only declining in 2011. Bibliometric analysis was conducted using the online analysis software CiteSpace and Bibliographic Item Co-Occurrence Matrix Builder (BICOMB). The United States maintains academic leadership in this field. The journal SPINE was the most authoritative, with 695 articles and an average of 12.73 citations. The exported major MeSH terms were further biclustered with gCLUTO according to co-word analysis to reveal research hotspots, including etiology, pathogenesis, clinical manifestation, conservative treatment, operative indication, internal implantation, and postoperative complications. After combination, the main topics focused on pathogenesis and surgical treatment. Narrowing causes flavum ligamentum hypertrophy, and posterior longitudinal ligament ossification is widely accepted. Additionally, minimally invasive surgery and internal implantation fixation are more valid in the clinic. Refining pathological classification and optimizing surgical methods and instrument properties will be important future research directions for spinal stenosis.

4.
BMC Cancer ; 21(1): 115, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33541299

ABSTRACT

BACKGROUND: In recent decades, the 5-year survival rate of osteosarcoma remains poor, despite the variety of operations, and exploration of drug therapy has become the key to improvement. This study investigates the contribution of different aspects in osteosarcoma and cure, and predicts research hotspots to benefit future clinical outcomes. METHODS: The Web of Science and PubMed databases were queried to collect all relevant publications related to osteosarcoma and cure from 2009 to 2019. These data were imported into CiteSpace and the Online Analysis Platform of Literature Metrology for bibliometric analysis. Bi-clustering was performed on Bibliographic Item co-occurrence Matrix Builder (BICOMB) and gCLUTO to identify hotspots. Additionally, completed clinical trials on osteosarcoma with results past phase II were collated. RESULTS: A total of 2258 publications were identified in osteosarcoma and cure from 2009 to 2019. China has the largest number of publications (38.49%), followed by the United States (23.03%) with the greatest impact (centrality = 0.44). The centrality of most institutions is < 0.1, and Central South University and Texas MD Anderson Cancer Center possess the highest average citation rates of 3.25 and 2.87. BMC cancer has the highest average citation rate of 3.26 in 772 journals. Four authors (Picci P, Gorlick R, Bielack SS and Bacci G) made the best contributions. We also identified eight hotspots and collected 41 clinical trials related to drug research on osteosarcoma. CONCLUSIONS: The urgent need exists to strengthen global academic exchanges. Overcoming multidrug resistance in osteosarcoma is the focus of past, present and future investigations. Transformation of the metastasis pattern, microenvironment genetics mechanism, alternative methods of systemic chemotherapy and exploration of traditional Chinese medicine is expected to contribute to a new upsurge of research.


Subject(s)
Bibliometrics , Biomedical Research , Bone Neoplasms/therapy , Databases, Factual , Osteosarcoma/therapy , Bone Neoplasms/pathology , Humans , Osteosarcoma/pathology , Prognosis , Survival Rate , Time Factors
5.
Front Cell Infect Microbiol ; 10: 535310, 2020.
Article in English | MEDLINE | ID: mdl-33330117

ABSTRACT

Background: Multiple studies have shown that an imbalance in the intestinal microbiota is related to bone metabolism, but the role of the intestinal microbiota in postmenopausal osteoporosis remains to be elucidated. We explored the effect of the intestinal microbiota on osteoporosis. Methods: We constructed a postmenopausal osteoporosis mouse model, and Micro CT was used to observe changes in bone structure. Then, we identified the abundance of intestinal microbiota by 16S RNA sequencing and found that the ratio of Firmicutes and Bacteroidetes increased significantly. UHPLC-MS analysis was further used to analyze changes in metabolites in feces and serum. Results: We identified 53 upregulated and 61 downregulated metabolites in feces and 2 upregulated and 22 downregulated metabolites in serum under OP conditions, and interestedly, one group of bile acids showed significant differences in the OP and control groups. Network analysis also found that these bile acids had a strong relationship with the same family, Eggerthellaceae. Random forest analysis confirmed the effectiveness of the serum and fecal models in distinguishing the OP group from the control group. Conclusions: These results indicated that changes in the gut microbiota and metabolites in feces and serum were responsible for the occurrence and development of postmenopausal osteoporosis. The gut microbiota is a vital inducer of osteoporosis and could regulate the pathogenesis process through the "microbiota-gut-metabolite-bone" axis, and some components of this axis are potential biomarkers, providing a new entry point for the future study on the pathogenesis of postmenopausal osteoporosis.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Osteoporosis, Postmenopausal , Animals , Feces , Female , Humans , Metabolomics , Mice , RNA, Ribosomal, 16S/genetics
6.
Mol Med Rep ; 22(2): 1179-1186, 2020 08.
Article in English | MEDLINE | ID: mdl-32626973

ABSTRACT

Idiopathic scoliosis (IS) is a spinal 3­dimensional deformity with an unknown cause. Melatonin is secreted by the pineal body and contributes to the occurrence and progression of IS. In our previous preliminary study, it was reported that high concentrations of melatonin can induce osteoblast apoptosis, thus acting as an IS treatment, but the mechanism of action is unknown. Therefore, the present study was performed to further investigate the possible mechanism underlying the efficacy of melatonin as a treatment for IS. The present results indicated that high concentrations of melatonin mediate endoplasmic reticulum stress (ERS)­induced apoptosis in hFOB 1.19 cells, and this resulted in a significant and dose­dependent increase in the expression of Septin4, as well as the expression levels of glucose­regulated protein (GRP)78, GRP94 and cleaved caspase­3. Furthermore, osteoblasts were overexpressed with Septin4 and the mechanism via which melatonin induces osteoblast ERS was demonstrated to be via the regulation of Septin4. In addition, it was indicated that cytoskeleton destruction, cell morphology changes and the decrease in the number of cells were aggravated after osteoblasts were overexpressed with Septin4, as indicated by phalloidin and DAPI staining. Collectively, the present results suggest that the Septin4 protein may be a target of ERS in melatonin­induced osteoblast apoptosis, which is involved in bone metabolism diseases, thus providing novel evidence for clinical melatonin treatment of IS.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Melatonin/pharmacology , Osteoblasts , Septins/physiology , Cell Line , Humans , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Scoliosis/metabolism
7.
Front Pharmacol ; 11: 667, 2020.
Article in English | MEDLINE | ID: mdl-32508637

ABSTRACT

A negative correlation exists between the severity of osteoporosis and citrate levels in bone. Our previous research found that melatonin can significantly improve bone mass in mice with osteoporosis, but the underlying mechanism involving citrate remains unknown. Herein, we demonstrated that melatonin increased bone volume and citrate levels in ovariectomized osteoporosis mice. Melatonin increased citrate and mineralized nodules in osteoblasts induced from primary mouse bone marrow mesenchymal stem cells in vitro. ZIP-1 knockdown and overexpression confirmed that melatonin specifically upregulated ZIP-1 to rescue citrate levels and bone mass. In general, we verified that melatonin can improve bone mass by enhancing matrix mineralization, which is highly related to increased citrate secretion from osteoblasts, and that ZIP-1 is the target of melatonin. These findings reveal another role of melatonin in regulating bone remodeling and provide a research base for its possible application in the treatment of clinical osteoporosis in the future.

8.
Ann Transl Med ; 8(6): 365, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32355809

ABSTRACT

BACKGROUND: This study aims to quantitatively and qualitatively investigate the trends in scoliosis research and evaluate research hotspots using bibliometric analysis. METHODS: All relevant publications on scoliosis from the period from 2009 to 2018 were extracted from the Web of Science and PubMed databases. Publication trends were analyzed using an Online analysis platform of literature metrology, Bibliographic Item Co-occurrence Matrix Builder (BICOMB), and CiteSpace software. Hotspots were analyzed and visualized using the gCLUTO software package. RESULTS: A total of 7,445 scoliosis research publications dated between 2009 and 2018 were found. The spine was the most popular journal in this field during this period. The United States maintained a top position in global scoliosis research throughout the 10 years and has had a pivotal influence, followed by China and Canada. Among all institutions, the University of California, San Francisco, was a leader in research collaboration. At the same time, Professors Yong Qiu and Lawrence G. Lenke made great achievements in scoliosis research. We analyzed the major Medical Subject Headings (MeSH) terms/MeSH subheadings and identified eight hotspots in scoliosis research. CONCLUSIONS: We summarized the publication information of scoliosis-related literature in the 10 years from 2009 to 2018, including country and institution of origin, authors, and publication journal. We analyzed former research hotspots in the field of scoliosis and predicted future areas of interest. The development of various new orthopedic plants, artificial intelligence diagnosis, and genetic research will be future hotspots in scoliosis research.

9.
Ann Transl Med ; 8(8): 528, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32411751

ABSTRACT

BACKGROUND: COVID-19 is currently rampant in China, causing unpredictable harm to humans. This study aimed to quantitatively and qualitatively investigate the research trends on coronaviruses using bibliometric analysis to identify new prevention strategies. METHODS: All relevant publications on coronaviruses were extracted from 2000-2020 from the Web of Science database. An online analysis platform of literature metrology, bibliographic item co-occurrence matrix builder (BICOMB) and CiteSpace software were used to analyse the publication trends. VOSviewer was used to analyse the keywords and research hotspots and compare COVID-19 information with SARS and MERS information. RESULTS: We found a total of 9,760 publications related to coronaviruses published from 2000 to 2020. The Journal of Virology has been the most popular journal in this field over the past 20 years. The United States maintained a top position worldwide and has provided a pivotal influence, followed by China. Among all the institutions, the University of Hong Kong was regarded as a leader for research collaboration. Moreover, Professors Yuen KY and Peiris JSM made great achievements in coronavirus research. We analysed the keywords and identified 5 coronavirus research hotspot clusters. CONCLUSIONS: We considered the publication information regarding different countries, institutions, authors, journals, etc. by summarizing the literature on coronaviruses over the past 20 years. We analysed the studies on COVID-19 and the SARS and MERS coronaviruses. Notably, COVID-19 must become the research hotspot of coronavirus research, and clinical research on COVID-19 may be the key to defeating this epidemic.

10.
Front Endocrinol (Lausanne) ; 11: 548812, 2020.
Article in English | MEDLINE | ID: mdl-33488513

ABSTRACT

Osteoporosis has become a worldwide disease characterized by a reduction in bone mineral density and the alteration of bone architecture leading to an increased risk of fragility fractures. And an increasing number of studies have indicated that osteoblasts undergo a large number of programmed death events by many different causes in osteoporosis and release NLRP3 and interleukin (e.g., inflammatory factors), which play pivotal roles in contributing to excessive differentiation of osteoclasts and result in exaggerated bone resorption. NLRP3 is activated during pyroptosis and processes the precursors of IL-1ß and IL-18 into mature forms, which are released into the extracellular milieu accompanied by cell rupture. All of these compounds are the classical factors of pyroptosis. The cellular effects of pyroptosis are commonly observed in osteoporosis. Although many previous studies have focused on the pathogenesis of these inflammatory factors in osteoporosis, pyroptosis has not been previously evaluated. In this review, pyroptosis is proposed as a novel hypothesis of osteoporosis pathogenesis for the first time, thus providing a new direction for the treatment of osteoporosis in the future.


Subject(s)
Osteoblasts/physiology , Osteoporosis/physiopathology , Pyroptosis , Animals , Humans , Inflammasomes/physiology , Interleukin-1/physiology , Interleukin-18/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Signal Transduction
11.
J Chem Phys ; 151(4): 044301, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31370521

ABSTRACT

Classical trajectory simulations of intermolecular collisions were performed for a series of polycyclic aromatic hydrocarbons interacting with the bath gases helium and argon for bath gas temperature from 300 to 2500 K. The phase-space average energy transferred per deactivating collision, ⟨∆Edown⟩, was obtained. The Buckingham pairwise intermolecular potentials were validated against high-level quantum chemistry calculations and used in the simulations. The reactive force-field was used to describe intramolecular potentials. The dependence of ⟨∆Edown⟩ on initial vibrational energy is discussed. A canonical sampling method was compared with a microcanonical sampling method for selecting initial vibrational energy at high bath gas temperatures. Uncertainties introduced by the initial angular momentum distribution were identified. The dependence of the collisional energy transfer parameters on the type of bath gas and the molecular structure of polycyclic aromatic hydrocarbons was examined.

SELECTION OF CITATIONS
SEARCH DETAIL
...