Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 33(10): 1833-1847, 2023 10.
Article in English | MEDLINE | ID: mdl-37914227

ABSTRACT

Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.


Subject(s)
Breeding , Genome , Humans , Animals , Swine , Genetic Variation , Mammals
2.
Theriogenology ; 198: 241-249, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36621133

ABSTRACT

Bone morphogenetic protein 15 (BMP15) is an X-linked gene encoding an oocyte secreted factor, which plays varied functions in the female fertility between mono-ovulatory and poly-ovulatory mammalian species. We previously found that knockout of BMP15 completely blocked porcine follicular development at preantral stages. However, the specific function of BMP15 on porcine oocytes in vitro maturation remains largely unknown. Here, we injected the pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complex into the cytoplasm of germinal vesicle stage porcine oocytes to disrupt BMP15. The ctRNP composed of Cas9 nuclease and crRNA-tracrRNA complex at 1.2/1 content ratio. The tested crRNA-tracrRNA complex concentration ranging from 50 to 200 ng/µL, all presented effective editing of BMP15 in porcine oocytes, and the 125 ng/µL crRNA-tracrRNA complex presented the highest editing efficiency (39.23 ± 3.33%). Surprisingly, we found approximately 95% edited oocytes presented monoallelic mutations, and only 5% edited oocytes harbored biallelic mutations. Interestingly, the coinjected two crRNAs guided the ctRNP complex to concurrently cut within a 10 bp window of the PAM (protospacer adjacent motif), resulting in a precise deletion within BMP15 in 85.9% edited oocytes, and additional deletion happened in 14.1% edited oocytes, which resulted in large fragment deletions in BMP15. Most deletions caused frameshift and introduced premature stop codon in BMP15, resulting in the disruption of BMP15 protein expression, which was confirmed by the Western blot analysis showing the reduced BMP15 protein expression in ctRNP injected oocytes. The disruption of BMP15 attenuated the activation of SMAD1/5/8 signaling, and impaired cumulus expansion of porcine cumulus cell-oocyte complexes (COCs). Our study proved that delivering CRISPR ctRNP into porcine oocytes by microinjection was able to edit BMP15 efficiently, providing a new strategy to investigate the functions of oocyte-specific secreted factors in oocyte in vitro maturation.


Subject(s)
Bone Morphogenetic Protein 15 , Oocytes , Swine , Female , Animals , Bone Morphogenetic Protein 15/genetics , Microinjections/veterinary , Oocytes/physiology , In Vitro Oocyte Maturation Techniques/veterinary , Cumulus Cells/physiology , Mammals
3.
Front Cell Dev Biol ; 10: 915898, 2022.
Article in English | MEDLINE | ID: mdl-36274842

ABSTRACT

Quercetin (QUE) is a component of the flavonoid family that shows various therapeutic properties, such as antioxidant effects. However, whether QUE affects porcine oocyte in vitro aging has not yet been investigated. Therefore, in this study, we applied various doses of QUE to freshly isolated porcine oocytes and found that 10 µM QUE improved the oocyte maturation rate in vitro, as reflected by the increased degree of cumulus cell expansion and first polar body extrusion. More importantly, we found that QUE reduced in vitro aging and improved the maturity level of porcine oocytes after another 24 h of culturing, accompanied by the upregulated expression levels of bone morphogenetic protein 15, growth differentiation factor 9, Moloney sarcoma oncogene, and cyclin-dependent kinase 2. In addition, we found that QUE treatment significantly reduced the intracellular reactive oxygen species levels, apoptosis, and autophagy and upregulated the expression levels of superoxide dismutase 2 and catalase in aged porcine oocytes. In addition, QUE restored impaired mitochondrial membrane potential and spindle assembly in aged porcine oocytes. Our findings demonstrate that QUE can protect porcine oocytes from in vitro aging by reducing oxidative stress and maintaining mitochondrial function.

4.
Biol Reprod ; 104(3): 562-577, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33246325

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) has been extensively investigated to participate in diverse biological processes, including carcinogenesis, the cell cycle, X-chromosome inactivation, and early embryonic development. However, the functions of this protein during mammalian oocyte meiotic maturation remain largely unexplored. Here, combined with RNA-Seq, we provided evidence that EZH2 is essential for oocyte meiotic maturation in pigs. First, EZH2 protein expression increased with oocyte progression from GV to MII stage. Second, the siRNA-mediated depletion of EZH2 led to accelerated GVBD and early occurrence of the first polar body extrusion. Third, EZH2 knockdown resulted in defective spindle assembly, abnormal SAC activity, and unstable K-MT attachment, which was concomitant with the increased rate of aneuploidy. Finally, EZH2 silencing exacerbated oxidative stress by increasing ROS levels and disrupting the distribution of active mitochondria in porcine oocytes. Furthermore, parthenogenetic embryonic development was impaired following the depletion of EZH2 at GV stage. Taken together, we concluded that EZH2 is necessary for porcine oocyte meiotic progression through regulating spindle organization, maintaining chromosomal integrity, and mitochondrial function.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , Meiosis/physiology , Oocytes/physiology , Spindle Apparatus/physiology , Aneuploidy , Animals , Cell Cycle Checkpoints , Chromosomes , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Knockdown Techniques , Histones , Mitochondria , Parthenogenesis , RNA-Seq , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...