Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 88(11): 2974-2985, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38096082

ABSTRACT

Waste copper-containing paint residue (WCPR) represents a typical hazardous waste containing both toxic organic substances and toxic heavy metals, but there are few reports on the recycling of heavy metals. The recovery of Cu from WCPR by H2SO4 leaching-extraction-stripping has the advantages of eco-friendliness, simplicity of operation, and high value-added product. The results show that under the optimal conditions, the leaching rate of Cu in WCPR is 94.31% (18.02 g/L), while the extraction and stripping rates of Cu in the leaching solution are 99.46 and 95.32%, respectively. Due to the high concentration of Cu2+ with fewer impurities in the stripping solution, the stripping solution is heated, evaporated, cooled, and crystallized to successfully produce high-purity dark blue CuSO4 crystal, accomplishing the high-value recycling of Cu in WCPR. In addition, the leach residue of WCPR contains acrylic resin and SiO2, which can be used in cement kilns for incineration, thus realizing the overall recycling and utilization of WCPR.


Subject(s)
Copper , Metals, Heavy , Silicon Dioxide , Metals, Heavy/chemistry , Recycling , Paint
2.
J Environ Manage ; 342: 118294, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37295149

ABSTRACT

Waste zinc-rich paint residue (WZPR) represents a typical hazardous waste containing both toxic organic substances and heavy metals. The extraction of Zn from WZPR by traditional direct bioleaching has been attracting attention owing to its eco-friendliness, energy conservation and low cost. However, a long bioleaching time and a low Zn release cast a shadow on the reputed bioleaching. To shorten the bioleaching time, the spent medium (SM) process was first used to free Zn from WZPR in this study. The results showed that the SM process had a much higher performance in Zn extraction. Zn removals of 100% and 44.2% (8.6 g/L and 15.2 g/L in the released concentration) were gained within 24 h under pulp densities of 2.0% and 8.0%, respectively, being over 1000 times of the release performance of Zn by previously reported direct bioleaching. On the one hand, the biogenic H+ in SM attacks ZnO to liberate Zn (Ⅱ) via quick acid dissolution. On the other hand, the biogenic Fe3+ not only highly oxidizes Zn0 in WZPR to generate and release Zn2+ but also intensely hydrolyzes to produce H+ to attack ZnO for further dissolution of Zn2+. Both biogenic H+ and Fe3+ contribute to over 90% of Zn extraction as the leading indirect bioleaching mechanism. Due to the high concentration of released Zn2+ and fewer impurity, the bioleachate was used to successfully produce high-purity ZnCO3/ZnO using a simple precipitation, thus achieving the high-value recycling of Zn in WZPR.


Subject(s)
Metals, Heavy , Zinc Oxide , Zinc/chemistry , Hazardous Waste
3.
J Environ Manage ; 312: 114927, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35358844

ABSTRACT

Electroplating sludge contains amounts of valuable/toxic metals as a typical hazardous solid waste, but existing technology is hard to simultaneously gain the high recovery of valuable metals and its convert into general solid waste. In this study, indirect bioleaching process was optimized by using RSM for high recovery of four valuable metals (Ni, Cu, Zn and Cr) from electroplating sludge and its shift into general waste. The results showed that the maximum leaching rate respectively was 100% for Ni, 96.5% for Cu, 100% for Zn and 76.1% for Cr at the optimal conditions. In particular, bioleaching saw a much better performance than H2SO4 leaching in removal of highly toxic Cr (76.1% vs. 30.2%). The extraction efficiency of Cr by H2SO4 leaching sharply rose to 72.6% in the presence of 9.0 g/L Fe3+, suggesting that Fe3+ played an important role in the bioleaching of Cr. Based on bioleaching dynamics analysis, it was speculated that Fe3+ passes through the solid shell and enter inside the sludge to attack Cr assisting by extracellular polymeric substances (EPS), leading to high extraction and low residue of Cr. Meanwhile, due to high-efficient release and removal of valuable/toxic metals by bioleaching, the bioleached residues successfully degraded into general based on TCLP test and can be reused as construction material safely.


Subject(s)
Metals, Heavy , Sewage , Electroplating , Metals, Heavy/analysis , Sewage/chemistry , Solid Waste/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...