Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 881952, 2022.
Article in English | MEDLINE | ID: mdl-35783279

ABSTRACT

Cipangopaludina chinensis is an economically important aquatic snail with high medicinal value. However, molecular biology research on C. chinensis is limited by the lack of a reference genome, so the analysis of its transcripts is an important step to study the regulatory genes of various substances in C. chinensis. Herein, we conducted the first full-length transcriptome analysis of C. chinensis using PacBio single-molecule real-time (SMRT) sequencing technology. We identified a total of 26,312 unigenes with an average length of 2,572 bp, of which the largest number of zf-c2h2 transcription factor families (120,18.24%) were found, and also observed that the majority of the 8,058 SSRs contained 4-7 repeat units, which provided data for subsequent work on snail genetics Subsequently, 91.86% (24,169) of the genes were successfully annotated to the four major databases, while the highest homology was observed with Pomacea canaliculata. Functional annotation revealed that the majority of transcripts were enriched in metabolism, signal transduction and Immune-related pathways, and several candidate genes involved in drug metabolism and immune response were identified (e.g., CYP1A1, CYP2J, CYP2U1, GST, ,PIK3, PDE3A, PRKAG). This study lays a foundation for future molecular biology research and provides a reference for studying genes associated with the medicinal value of C. chinensis.

3.
PeerJ ; 10: e13042, 2022.
Article in English | MEDLINE | ID: mdl-35282274

ABSTRACT

Cipangopaludina chinensis is an important economic value snail species with high medicinal value. The gut microbes of aquatic animals plays a vital role in food digestion and nutrient absorption. Herein, we aimed at high-throughput sequencing of 16S rRNA to further investigate whether there were differences in the composition and function of gut microbes of adult and juvenile C. chinensis snails, as well as sediments. This study found that the microbial diversity of the sediment was significantly higher than that of the snails gut (P < 0.001), but there was no significant difference between the gut flora of adult and juvenile snails (P > 0.05). A total of 47 phyla and 644 genera were identified from all samples. Proteobacteria and Verrucomicrobia were the two dominant phyla in all samples, and overall relative abundances was 48.2% and 14.2%, respectively. Moreover, the relative abundances of Aeromonas and Luteolibacter in the gut of juvenile snails (30.8%, 11.8%) were higher than those of adults (27.7%, 10.6%) at the genus level (P > 0.05). Then, four indicator genera were found, namely Flavobacterium, Silanimonas, Geobacter and Zavarzinella, and they abundance in the gut of juvenile snails was significantly higher than that of adults (P < 0.05). This results imply the potential development of Silanimonas as a bait for juvenile snail openings. We observed that Aeromonas was the primary biomarker of the snail gut and sediments (P < 0.001), and it may be a cellulose-degrading bacteria. Function prediction revealed significantly better biochemical function in the snail gut than sediments (P < 0.001), but no significant differences in adult and juvenile snail (P > 0.05). In conclusion, studies show that the snail gut and sediment microbial composition differ, but the two were very similar. The microbial composition of the snail gut was relatively stable and has similar biological functions. These findings provide valuable information for in-depth understanding of the relationship between snails and environmental microorganisms.


Subject(s)
Gastrointestinal Microbiome , Oryza , Animals , Gastrointestinal Microbiome/genetics , Oryza/genetics , RNA, Ribosomal, 16S/genetics , Snails/genetics , Food
4.
Article in English | MEDLINE | ID: mdl-34942523

ABSTRACT

Growth mechanism of economically important aquaculture species has aroused widespread interest among scholars. Rice flower carp (Cyprinus carpio), commonly cultured in rice-fish farming systems, shows wide variation in body mass at the same age, which limits the development of commercial aquaculture. In this study, muscle tissues from 20-month-old fish of different sizes were used for transcriptome analysis and muscle histological studies. The muscle histological analysis showed the muscle growth in rice flower carp main depends on the hypertrophic growth of muscle fibers. A total of 30,590 unigenes were generated by muscle trancriptome analysis, including 403 differentially expressed genes (DEGs). Of these, 157 DEGs were upregulated and 246 DEGs were downregulated. Nine unigenes related to the ubiquitin-proteasome pathway were identified using differential expression analysis. This study initially revealed that the differences in growth of rice flower carp could be due to hypertrophic growth of muscle fibers caused by higher protein deposition, and the ubiquitin-proteasome pathway was an important factor affecting the growth rate of rice flower carp. E3 ubiquitin-protein ligase ari7, g2e3, Neurl1 and rnf144ab were upregulated in the slow-growing fish, indicating the binding of ubiquitin to target protein was enhanced. Foxo3 was upregulated in the slow-growing fish, which could promote the muscle loss. Eif4a2 was upregulated in the fast-growing fish, increasing protein translation efficiency. Some genes related to active muscle contraction such as actb, actg, camk2a, and camk2b were upregulated in the fast-growing rice flower carp muscle. In summary, these results provide valuable information about the key genes for use as biomarkers of growth in selective breeding programs for rice flower carp and provide novel insights into the regulatory mechanisms of muscle growth.


Subject(s)
Carps , Oryza , Animals , Carps/genetics , Carps/metabolism , Flowers/metabolism , Gene Expression Profiling , Muscles/metabolism , Oryza/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Transcriptome , Ubiquitin/genetics
5.
Article in English | MEDLINE | ID: mdl-33296765

ABSTRACT

Gonadotropin releasing hormone (GnRH) plays an important role in the regulation of vertebrate reproduction. Studies have shown that immunization against GnRHa can induce sexually sterile tilapia. To explore the mechanism behind this, in this study, RNA-seq and data-independent acquisition (DIA) techniques were used to study the transcriptome and proteome of the gonad of tilapia immunized with GnRHa. 644 differentially expressed genes (80 upregulated and 564 downregulated) and 1150 differentially expressed proteins (351 upregulated and 799 downregulated) were identified. There were 209 genes with consistent differential expression patterns in the transcriptomic and proteomic analyses, of which 9 were upregulated and 200 downregulated, indicating that the gonad gene expression was inhibited by GnRHa immunization. The downregulated genes were particularly involved in the functions of single-organism process, binding, cellular process, metabolic process and catalytic activity, and associated with the pathways including ECM-receptor interaction, focal adhesion, cardiac muscle contraction and oxidative phosphorylation. The expression of six differentially expressed genes involved in the GnRH signaling pathway was all downregulated. In addition, several important functional genes related to gonadal development after GnRHa immunization were screened. This study confirmed the expression of corresponding genes was affected by GnRHa on the gonad development in tilapia at the molecular level, and laid a foundation for elucidating the mechanism of GnRHa immunization.


Subject(s)
Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/pharmacology , Tilapia/genetics , Transcriptome/drug effects , Animals , Down-Regulation/drug effects , Female , Gonads/drug effects , Gonads/metabolism , Male , Proteome/genetics , Up-Regulation/drug effects
6.
Fish Shellfish Immunol ; 107(Pt B): 469-479, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33181338

ABSTRACT

To investigate the physiological responses of Oreochromis aureus to salinity fluctuations at the molecular level. We used RNA-seq to explore the differentially expressed genes (DEGs) in the liver and spleen of O. aureus at 0, 3, 7 and 11 ppt (parts per thousand) salinity levels. Herein, De novo assembly generated 71,009 O. aureus unigenes, of which 34,607 were successfully mapped to the four major databases. A total of 120 shared DEGs were identified in liver and spleen transcripts, of which 83 were up-regulated and 37 were down-regulated. GO and KEGG analysis found a total of 26 significant pathways, mainly including energy metabolism, immune response, ion transporters and signal transduction. The trend module category of DEGs showed that the genes (e.g., FASN, ODC1, CD22, MRC, TRAV and SLC7 family) involved in the change-stable-change (1) and the constant-change categories (2) were highly sensitive to salinity fluctuations, which were of great value for further study. Based on these results, it would help provide basic data for fish salinity acclimation, and provide new insights into evolutionary response of fish to various aquatic environments in the long-term stress adaptation mechanism.


Subject(s)
Cichlids/physiology , Energy Metabolism , Immunity , Liver/metabolism , Salt Stress/physiology , Spleen/metabolism , Transcriptome/physiology , Animals , Cichlids/genetics , Cichlids/immunology , Salt Stress/immunology , Transcriptome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...