Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Opt Lett ; 47(8): 2008-2011, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427323

ABSTRACT

Reinforcement learning (RL) is applied to improve the performance of the polarization modulator (PolM)-based W-band radio-over-fiber (RoF) system in this Letter. By controlling the polarization angle of the dual-wavelength laser source in the PolM-based scheme, the RF response can be easily modified and therefore it hugely increases the available bandwidth in the RoF system. In the proposed RL scheme, the state is described as the value of the angle from the polarization controller (PC). We use changing the angle of the polarizer (P) as the actions of the RL agent to optimize the frequency response. The agent also receives a reward from the system and learns from the environment and previous experience. Moreover, the reward is the value of error vector magnitude at each state. Therefore, the proposed scheme of RL is implemented and demonstrated in a multi-channel RoF system, and the results show that an RL agent provides an effective intelligent technique to obtain the best quality of data transmission.

2.
J Neurotrauma ; 36(21): 2991-3004, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31099299

ABSTRACT

The present study was designed to evaluate the therapeutic effectiveness and mechanism of acute intermittent hypoxia on respiratory function at distinct injury stages following mid-cervical spinal contusion. In the first experiment, adult male rats received laminectomy or unilateral contusion at 3rd-4th cervical spinal cord at 9 weeks of age. The ventilatory behavior in response to mild acute intermittent hypercapnic-hypoxia (10 episodes of 5 min of hypoxia [10% O2, 4% CO2, 86% N2] with 5 min of normoxia intervals) was measured by whole-body plethysmography at the acute (∼3 days), subchronic (∼2 weeks), and chronic (∼8 weeks) injury stages. The minute ventilation of contused animals is significantly enhanced following acute intermittent hypercapnic-hypoxia due to an augmentation of the tidal volume at all time-points post-injury. However, acute intermittent hypercapnia-hypoxia-induced ventilatory long-term facilitation was only observed in uninjured animals at the acute stage. During the second experiment, the effect of acute intermittent hypercapnic-hypoxia on respiration was examined in contused animals after a blockade of serotonin receptors, or adenosine 2A receptors. The results demonstrated that acute intermittent hypercapnic-hypoxia-induced enhancement of minute ventilation was attenuated by a serotonin receptor antagonist (methysergide) but enhanced by an adenosine 2A receptor antagonist (KW6002) at the subchronic and chronic injury stages. These results suggested that acute intermittent hypercapnic-hypoxia can induce respiratory recovery from acute to chronic injury stages. The therapeutic effectiveness of intermittent hypercapnic-hypoxia is dampened by the inhibition of serotonin receptors, but a blockade of adenosine 2A receptors enhanced respiratory recovery induced by intermittent hypercapnic-hypoxia.


Subject(s)
Hypoxia , Neuronal Plasticity/physiology , Receptor, Adenosine A2A/metabolism , Receptors, Serotonin/metabolism , Respiration/drug effects , Spinal Cord Injuries/physiopathology , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Cervical Cord/injuries , Hypercapnia , Male , Neuronal Plasticity/drug effects , Phrenic Nerve/drug effects , Phrenic Nerve/physiopathology , Rats , Rats, Sprague-Dawley , Respiration Disorders/etiology , Respiration Disorders/physiopathology , Serotonin Antagonists/pharmacology , Spinal Cord Injuries/complications , Spinal Cord Injuries/metabolism
3.
J Neurotrauma ; 35(3): 533-547, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28844175

ABSTRACT

The present study was designed to investigate the diaphragm and intercostal muscle activity after unilateral mid-cervical spinal cord contusion in rats. Electromyogram (EMG) activity of the bilateral diaphragm and T2 intercostal muscle was measured in anesthetized and spontaneously breathing rats. Unilateral mid-cervical contusion caused an immediate reduction in inspiratory bursting in the bilateral diaphragm and intercostal muscles. From 3 days to 8 weeks post-contusion, contused animals displayed significantly lower tidal volume than uninjured animals, regardless of the time point after injury. The burst amplitude of the contralateral diaphragm EMG was augmented in contused animals at 3 days post-injury. When the data were normalized by the maximal response during hypoxic-hypercapnic challenge (12-13% O2, 3-4% CO2), the ipsilateral diaphragm EMG of contused animals was greater than that of uninjured animals at 3 days and 2 weeks post-injury. Moreover, hypoxia-hypercapnia-induced increases in ipsilateral diaphragm EMG activity were blunted in contused animals at 2 weeks post-injury, but recovered at 8 weeks post-injury. Bilateral diaphragm EMG activity in contused animals was comparable to uninjured animals at 8 weeks post-injury. Notably, intercostal muscle activity was not substantially changed by mid-cervical spinal cord contusion from 3 days to 8 weeks post-contusion. These results suggest that mid-cervical spinal contusion induces a compensatory increase in contralateral diaphragmatic activity and greater utilization of a percentage of maximal inspiratory activity in the ipsilateral diaphragm. The maintenance of intercostal muscle activity may enable the animal to sustain essential breathing capacity after cervical spinal cord injury.


Subject(s)
Diaphragm/physiology , Intercostal Muscles/physiology , Spinal Cord Injuries/physiopathology , Animals , Cervical Cord/physiopathology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...