Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Natl Compr Canc Netw ; 21(1): 12-20, 2023 01.
Article in English | MEDLINE | ID: mdl-36634606

ABSTRACT

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Adult , Humans , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Central Nervous System , Mutation
2.
J Natl Compr Canc Netw ; 18(11): 1537-1570, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33152694

ABSTRACT

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of adult CNS cancers ranging from noninvasive and surgically curable pilocytic astrocytomas to metastatic brain disease. The involvement of an interdisciplinary team, including neurosurgeons, radiation therapists, oncologists, neurologists, and neuroradiologists, is a key factor in the appropriate management of CNS cancers. Integrated histopathologic and molecular characterization of brain tumors such as gliomas should be standard practice. This article describes NCCN Guidelines recommendations for WHO grade I, II, III, and IV gliomas. Treatment of brain metastases, the most common intracranial tumors in adults, is also described.


Subject(s)
Astrocytoma , Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Adult , Astrocytoma/diagnosis , Astrocytoma/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Central Nervous System , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Glioma/diagnosis , Glioma/therapy , Humans , Practice Guidelines as Topic
3.
ESMO Open ; 5(4)2020 07.
Article in English | MEDLINE | ID: mdl-32661186

ABSTRACT

BACKGROUND: Most glioblastoma tumours exhibit intrinsic phosphatidylinositol 3-kinase (PI3K) pathway activation. Preclinical in vitro and in vivo models suggest that buparlisib (an oral pan-PI3K inhibitor) can have an effect on glioblastoma directly and by enhancing the activity of radiation and of temozolomide. METHODS: This was a phase I, two-stage, multicentre, open-label, dose-escalation study of buparlisib in combination with temozolomide and radiotherapy in patients with newly diagnosed glioblastoma. In stage I, patients who completed the concomitant phase of combination of temozolomide and radiation prior to study entry received buparlisib in combination with temozolomide. In stage II, patients received buparlisib in combination with temozolomide and radiotherapy in the concomitant phase and temozolomide in the adjuvant treatment phase. The primary objective was to estimate the maximum tolerated dose (MTD) of buparlisib when combined with the approved first-line treatment of temozolomide and radiotherapy. RESULTS: The MTD of buparlisib in combination with temozolomide at stage I (adjuvant phase only) was 80 mg/day, which was used as the starting dose in stage II. The MTD of buparlisib in combination with temozolomide and radiotherapy in stage II (concomitant + adjuvant phase) was not determined due to the observed dose-limiting toxicities and treatment discontinuations due to adverse events (AEs). In stage I, the most commonly reported AEs were nausea (72.7%) and fatigue (59.1%). In stage II, the most commonly reported AEs were fatigue and nausea (56.3% each). No on-treatment deaths were reported during the study. CONCLUSION: Considering that the primary objective of estimating the MTD was not achieved in addition to the observed challenging safety profile of buparlisib in combination with radiotherapy and temozolomide, Novartis decided not to pursue the development of buparlisib in newly diagnosed glioblastoma.Trial registration numberClinicalTrials.gov identifier: NCT01473901.


Subject(s)
Glioblastoma , Adult , Aged , Aminopyridines , Antineoplastic Combined Chemotherapy Protocols , Chemoradiotherapy , Female , Glioblastoma/therapy , Humans , Male , Middle Aged , Morpholines , Phosphatidylinositol 3-Kinases , Temozolomide
4.
ESMO Open ; 5(4)2020 07.
Article in English | MEDLINE | ID: mdl-32665311

ABSTRACT

BACKGROUND: Glioblastoma relapse is associated with activation of phosphatidylinositol 3-kinase (PI3K) signalling pathway. In preclinical studies, the pan-PI3K inhibitor buparlisib showed antitumour activity in glioma models. METHODS: This was a two-part, multicentre, phase Ib/II study in patients with recurrent glioblastoma pretreated with radiotherapy and temozolomide standard of care. Patients received buparlisib (80 mg or 100 mg once daily) plus carboplatin (area under the curve (AUC)=5 every 3 weeks), or buparlisib (60 mg once daily) plus lomustine (100 mg/m2 every 6 weeks). The primary endpoint was to determine the maximum tolerable dose (MTD) and/or recommended phase II dose of buparlisib plus carboplatin or lomustine. RESULTS: Between 28 February 2014 and 7 July 2016, 35 patients were enrolled and treated with buparlisib plus carboplatin (n=17; buparlisib (80 mg) plus carboplatin, n=3; and buparlisib (100 mg) plus carboplatin, n=14), or buparlisib (60 mg) plus lomustine (n=18). The MTD of buparlisib was determined to be 100 mg per day in combination with carboplatin at an AUC of 5 every 3 weeks. The MTD of buparlisib in combination with lomustine could not be determined as it did not satisfy the MTD criteria per the Bayesian logistic regression model. CONCLUSION: The overall safety profile of buparlisib remained unchanged, and no new or unexpected safety findings were reported in this study. Preliminary assessment for both combinations did not demonstrate sufficient antitumour activity compared with historical data on single-agent carboplatin or lomustine. TRIAL REGISTRATION NUMBER: NCT01934361.


Subject(s)
Glioblastoma , Aged , Aminopyridines , Antineoplastic Combined Chemotherapy Protocols , Bayes Theorem , Carboplatin/therapeutic use , Female , Glioblastoma/drug therapy , Humans , Lomustine/therapeutic use , Male , Middle Aged , Morpholines , Phosphatidylinositol 3-Kinases/therapeutic use , Recurrence
5.
J Natl Compr Canc Netw ; 15(11): 1331-1345, 2017 11.
Article in English | MEDLINE | ID: mdl-29118226

ABSTRACT

For many years, the diagnosis and classification of gliomas have been based on histology. Although studies including large populations of patients demonstrated the prognostic value of histologic phenotype, variability in outcomes within histologic groups limited the utility of this system. Nonetheless, histology was the only proven and widely accessible tool available at the time, thus it was used for clinical trial entry criteria, and therefore determined the recommended treatment options. Research to identify molecular changes that underlie glioma progression has led to the discovery of molecular features that have greater diagnostic and prognostic value than histology. Analyses of these molecular markers across populations from randomized clinical trials have shown that some of these markers are also predictive of response to specific types of treatment, which has prompted significant changes to the recommended treatment options for grade III (anaplastic) gliomas.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/analysis , Central Nervous System Neoplasms/diagnosis , Glioma/diagnosis , Nervous System/pathology , Antineoplastic Combined Chemotherapy Protocols/standards , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/therapy , Combined Modality Therapy/methods , Combined Modality Therapy/standards , Glioma/classification , Glioma/pathology , Glioma/therapy , Humans , Neoadjuvant Therapy/methods , Neoadjuvant Therapy/standards , Neoplasm Grading , Prognosis , Radiotherapy/methods , Radiotherapy/standards
6.
J Natl Compr Canc Netw ; 13(10): 1191-202, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26483059

ABSTRACT

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Central Nervous System (CNS) Cancers provide interdisciplinary recommendations for managing adult CNS cancers. Primary and metastatic brain tumors are a heterogeneous group of neoplasms with varied outcomes and management strategies. These NCCN Guidelines Insights summarize the NCCN CNS Cancers Panel's discussion and highlight notable changes in the 2015 update. This article outlines the data and provides insight into panel decisions regarding adjuvant radiation and chemotherapy treatment options for high-risk newly diagnosed low-grade gliomas and glioblastomas. Additionally, it describes the panel's assessment of new data and the ongoing debate regarding the use of alternating electric field therapy for high-grade gliomas.


Subject(s)
Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/radiotherapy , Practice Guidelines as Topic , Adult , Central Nervous System Neoplasms/pathology , Humans , Neoplasm Metastasis
7.
Neuro Oncol ; 17(11): 1486-96, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25825052

ABSTRACT

BACKGROUND: Pediatric low-grade gliomas (PLGGs), the most frequent pediatric brain tumor, comprise a heterogeneous group of diseases. Recent genomic analyses suggest that these tumors are mostly driven by mitogene-activated protein kinase (MAPK) pathway alterations. However, little is known about the molecular characteristics inherent to their clinical and histological heterogeneity. METHODS: We performed gene expression profiling on 151 paraffin-embedded PLGGs from different locations, ages, and histologies. Using unsupervised and supervised analyses, we compared molecular features with age, location, histology, and BRAF genomic status. We compared molecular differences with normal pediatric brain expression profiles to observe whether those patterns were mirrored in normal brain. RESULTS: Unsupervised clustering distinguished 3 molecular groups that correlated with location in the brain and histological subtype. "Not otherwise specified" (NOS) tumors did not constitute a unified class. Supratentorial pilocytic astrocytomas (PAs) were significantly enriched with genes involved in pathways related to inflammatory activity compared with infratentorial tumors. Differences based on tumor location were not mirrored in location-dependent differences in expression within normal brain tissue. We identified significant differences between supratentorial PAs and diffuse astrocytomas as well as between supratentorial PAs and dysembryoplastic neuroepithelial tumors but not between supratentorial PAs and gangliogliomas. Similar expression patterns were observed between childhood and adolescent PAs. We identified differences between BRAF-duplicated and V600E-mutated tumors but not between primary and recurrent PLGGs. CONCLUSION: Expression profiling of PLGGs reveals significant differences associated with tumor location, histology, and BRAF genomic status. Supratentorial PAs, in particular, are enriched in inflammatory pathways that appear to be tumor-related.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Transcriptome , Adolescent , Child , Child, Preschool , Cluster Analysis , Female , Gene Expression Profiling , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Male , Neoplasm Grading , Oligonucleotide Array Sequence Analysis
8.
J Natl Compr Canc Netw ; 12(11): 1517-23, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25361798

ABSTRACT

The NCCN Guidelines for Central Nervous System Cancers provide multidisciplinary recommendations for the clinical management of patients with cancers of the central nervous system. These NCCN Guidelines Insights highlight recent updates regarding the management of metastatic brain tumors using radiation therapy. Use of stereotactic radiosurgery (SRS) is no longer limited to patients with 3 or fewer lesions, because data suggest that total disease burden, rather than number of lesions, is predictive of survival benefits associated with the technique. SRS is increasingly becoming an integral part of management of patients with controlled, low-volume brain metastases.


Subject(s)
Central Nervous System Neoplasms/secondary , Central Nervous System Neoplasms/surgery , Humans , Radiosurgery/methods
9.
Neuro Oncol ; 11(2): 109-21, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18682579

ABSTRACT

Glioblastoma multiforme (GBM) arises from genetic and signaling abnormalities in components of signal transduction pathways involved in proliferation, survival, and the cell cycle axis. Studies to date with single-agent targeted molecular therapy have revealed only modest effects in attenuating the growth of these tumors, suggesting that targeting multiple aberrant pathways may be more beneficial. Heat-shock protein 90 (HSP90) is a molecular chaperone that is involved in the conformational maturation of a defined group of client proteins, many of which are deregulated in GBM. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a well-characterized HSP90 inhibitor that should be able to target many of the aberrant signal transduction pathways in GBM. We assessed the ability of 17-AAG to inhibit the growth of glioma cell lines and glioma stem cells both in vitro and in vivo and assessed its ability to synergize with radiation and/or temozolomide, the standard therapies for GBM. Our results reveal that 17-AAG is able to inhibit the growth of both human glioma cell lines and glioma stem cells in vitro and is able to target the appropriate proteins within these cells. In addition, 17-AAG can inhibit the growth of intracranial tumors and can synergize with radiation both in tissue culture and in intracranial tumors. This compound was not found to synergize with temozolomide in any of our models of gliomas. Our results suggest that HSP90 inhibitors like 17-AAG may have therapeutic potential in GBM, either as a single agent or in combination with radiation.


Subject(s)
Benzoquinones/pharmacology , Brain Neoplasms/drug therapy , Glioma/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Stem Cells/physiology , Animals , Antineoplastic Agents, Alkylating/pharmacology , Blotting, Western , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Cell Line, Tumor , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Therapy, Combination , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioma/pathology , Glioma/radiotherapy , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Nude , Mice, SCID , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Radiation Tolerance , Temozolomide , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL