Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2406325, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137359

ABSTRACT

Liquid manipulation using tubular actuators finds diverse applications ranging from microfluidics, printing, liquid transfer to micro-reactors. Achieving flexible and simple regulation of manipulated liquid droplets during transport is crucial for the tubular liquid actuators to perform complex and multiple functions, yet it remains challenging. Here, a facile tubular actuator for directional transport of various liquid droplets under the control of an externally applied magnetic field is presented. The surfaces of the actuator can be engineered with submillimeter-sized through-hole pores, which enables the liquid droplet to be easily modulated in the transport process. Furthermore, the liquid actuator with featured through-hole pores is expanded to function as a switch in an integrated external electric circuit by magnetically controlling the motion of a conductive liquid droplet. This work develops a strategy for regulating liquid droplets in the tubular actuation systems, which may inspire ideas for designing functional liquid actuators with potential applications in microfluidics, microchemical reaction, liquid switch, and liquid robotics.

2.
IEEE Trans Med Imaging ; PP2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167522

ABSTRACT

Microwave-induced thermoacoustic imaging (M-TAI) allows the visualization of macroscopic and microscopic structures of bio-tissues. However, it suffers from severe inherent artifacts that might misguide the subsequent diagnostics and treatments of diseases. To overcome this limitation, we propose an optimized excitation strategy. In detail, the strategy integrates dynamically compound specific absorption rate (SAR) and co-planar configuration of polarization state, incident wave vector and imaging plane. Starting from the theoretical analysis, we interpret the underlying mechanism supporting the superiority of the optimized excitation strategy to achieve an effect equivalent to homogenizing the deposited electromagnetic energy in bio-tissues. The following numerical simulations demonstrate that the strategy enables better preservation of the conductivity weighting of samples while increasing Pearson correlation coefficient. Furthermore, the in vitro and in vivo M-TAI experiments validate the effectiveness and robustness of this optimized excitation strategy in artifact suppression, allowing the simultaneous identification of both boundary and inside fine structures within bio-tissues. All the results suggest that the optimized excitation strategy can be expanded to diverse scenarios, inspiring more suitable strategies that remarkably suppress the inherent artifacts in M-TAI.

3.
BMC Neurol ; 24(1): 38, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262944

ABSTRACT

BACKGROUND: Contrast-induced encephalopathy (CIE) is a rare complication during or after angiography, usually transient and reversible. CIE diagnosis is challenging due to the absence of no formal diagnostic criteria. CIE can mimic stroke symptoms, including visual disturbances, seizures, confusion, coma, and focal neurological deficits. This case reports neurological deficit reversal in a CIE patient due to the embolization of an intracranial aneurysm, the second angiographic procedure in six days. CASE PRESENTATION: A 77-year-old woman was admitted to the hospital for headaches. The cerebral computed tomography (CT) scan indicated a subarachnoid hemorrhage. The first digital subtraction angiography (DSA) identified an aneurysm of 4 mm ∗ 3 mm in size in the M1 segment of the right middle cerebral artery (MCA). Then, embolization surgery was performed for the cerebral aneurysm, which was successful. However, the patient had post-operative headaches, slurred speech, epilepsy, limb weakness, and delirium post-procedure. The non-contrast cerebral CT indicated widespread edema in the right cerebral hemisphere. The patient was diagnosed with CIE and treated with symptomatic supportive therapy. Eventually, the patient's neurological deficits and cerebral edema improved significantly. CONCLUSIONS: The current case emphasized the importance of early diagnosis and symptomatic treatment of CIE. Thus, CIE should be the first consideration during the differential diagnosis of a patient having acute neurological impairment after repeated DSA.


Subject(s)
Intracranial Aneurysm , Stroke , Subarachnoid Hemorrhage , Female , Humans , Aged , Angiography, Digital Subtraction , Headache
4.
Neuron ; 112(1): 155-173.e8, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37944520

ABSTRACT

The hypocretin (Hcrt) (also known as orexin) neuropeptidic wakefulness-promoting system is implicated in the regulation of spatial memory, but its specific role and mechanisms remain poorly understood. In this study, we revealed the innervation of the medial entorhinal cortex (MEC) by Hcrt neurons in mice. Using the genetically encoded G-protein-coupled receptor activation-based Hcrt sensor, we observed a significant increase in Hcrt levels in the MEC during novel object-place exploration. We identified the function of Hcrt at presynaptic glutamatergic terminals, where it recruits fast-spiking parvalbumin-positive neurons and promotes gamma oscillations. Bidirectional manipulations of Hcrt neurons' projections from the lateral hypothalamus (LHHcrt) to MEC revealed the essential role of this pathway in regulating object-place memory encoding, but not recall, through the modulation of gamma oscillations. Our findings highlight the significance of the LHHcrt-MEC circuitry in supporting spatial memory and reveal a unique neural basis for the hypothalamic regulation of spatial memory.


Subject(s)
Hypothalamus , Spatial Memory , Mice , Animals , Orexins/metabolism , Hypothalamus/metabolism , Neurons/physiology , Hypothalamic Area, Lateral/physiology
5.
Adv Mater ; 35(30): e2212149, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37078244

ABSTRACT

Liquid transportation is fundamentally important in microfluidics, water collection, biosensing, and printing, and has attracted enormous research interest in the past decades. However, despite substantial progress, it remains a big challenge to achieve the controlled transport of viscous liquids (>100 mPa s) commonly existing in daily life and the chemical industry. Inspired by the gastrointestinal peristalsis of mammalians that can efficiently transport viscous chyme (viscosity up to 2000 mPa s) by the synergistic combination of contraction driving force and lubrication, here, the design and construction of double-layered tubular hydrogel actuators for directional transport of highly viscous liquids ranging from ≈1000 mPa s to >80 000 mPa s under the control of an applied 808 nm laser, which is attributed to the cooperation of outer layer contraction and water film lubrication of the inner layer, is reported. It is demonstrated that the actuators are capable of transporting polymerizing liquid whose viscosity significantly increases to ≈11 182 mPa s in 2 h. This work paves a new avenue toward directional transport of highly viscous liquids, which not only expands the research scope of liquid transportation, but will spur the design of new liquid actuators with potential applications in viscous-liquid-based microfluidics, artificial blood vessels, and soft robots.

6.
iScience ; 25(5): 104180, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494235

ABSTRACT

In Drosophila melanogaster, olfactory projection neurons (PNs) convey odor information from the antenna lobe to higher brain regions. Recent transcriptomic studies reveal a large diversity of transcription factors, cell-surface molecules, neurotransmitter-coding, and neuropeptide-coding genes in PNs; however, their structural diversity remains unknown. Herein, we achieved a volumetric reconstruction of 89 PN boutons under Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and quantitatively analyzed the internal presynaptic active zones (PAZs) and dense-core vesicles (DCVs). The ultrastructure-based cluster analysis reveals three morphological distinct bouton subtypes: complex boutons, unilobed boutons, and simple boutons. The complex boutons contain the most PAZs and DCVs, which suggests that they are of the highest capability of releasing neurotransmitters and neuromodulators. By labeling a subset of boutons under FIB-SEM, we found that DCVs are preferentially distributed in certain GH146-positive subtypes. Our study demonstrates that PN boutons display distinct morphology, which may determine their capacity of releasing neurotransmitters and neuromodulators.

SELECTION OF CITATIONS
SEARCH DETAIL