Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 521
Filter
1.
Lipids Health Dis ; 23(1): 135, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715126

ABSTRACT

OBJECTIVE: The relationship between changes in Atherogenic Index of Plasma (AIP) and cardiometabolic diseases (CMD) in middle-aged and elderly individuals remains unclear. This study aims to explore the association between changes in AIP and CMD. METHODS: This study included 3,791 individuals aged over 45 years from CHARLS. Participants were divided into four groups using the K-Means clustering method. Cumulative AIP was used as a quantitative indicator reflecting changes in AIP. Differences in baseline data and CMD incidence rates among these four groups were compared. Multifactorial logistic regression models were used to assess the relationship between changes in AIP and CMD, and subgroup analysis and interaction tests were conducted to evaluate potential relationships between changes in AIP and CMD across different subgroups. Restricted cubic splines (RCS) were used to assess the dose-response relationship between cumulative AIP and CMD. RESULTS: Changes in AIP were independently and positively associated with CMD. In males, the risk significantly increased in class4 compared to class1 (OR 1.75, 95%CI 1.12-2.73). In females, changes in AIP were not significantly associated with CMD. Cumulative AIP was positively correlated with CMD (OR 1.15, 95%CI 1.01-1.30), with significant gender differences in males (OR 1.29, 95%CI 1.07-1.55) and females (OR 1.03, 95%CI 0.87-1.23) (p for interaction = 0.042). In addition, a linear relationship was observed between cumulative AIP and CMD in male. CONCLUSION: Substantial changes in AIP may increase the risk of CMD in middle-aged and elderly Chinese males. Dynamic monitoring of AIP is of significant importance for the prevention and treatment of CMD.


Subject(s)
Atherosclerosis , Humans , Female , Male , Middle Aged , Aged , Atherosclerosis/blood , Atherosclerosis/epidemiology , Cohort Studies , Sex Factors , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/blood , Risk Factors , Logistic Models
2.
BMC Geriatr ; 24(1): 325, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594634

ABSTRACT

BACKGROUND: Sarcopenia, an age-related disorder characterized by loss of skeletal muscle mass and function, is recently recognized as a complication in elderly patients with type 2 diabetes mellitus (T2DM). Skeletal muscles play a crucial role in glycemic metabolism, utilizing around 80% of blood glucose. Accordingly, we aimed to explore the relationship between glucose metabolism and muscle mass in T2DM. METHODS: We employed the AWGS 2019 criteria for diagnosing low muscle mass and 1999 World Health Organization (WHO) diabetes diagnostic standards. This study included data of 191 individuals aged 60 and above with T2DM of Shanghai Pudong Hospital from November 2021 to November 2022. Fasting C-peptide (FPCP), fasting plasma glucose (FPG), 2-hour postprandial plasma glucose (PPG) and postprandial 2-hour C-peptide (PPCP), glycated hemoglobin A1c (HbA1c), glycated albumin (GA), serum lipids spectrum, renal and hepatic function, hemoglobin, and hormone were measured. Based on the findings of univariate analysis, logistic regression and receiver operating characteristic (ROC) curves were established. RESULTS: Participants with low muscle mass had significantly lower alanine and aspartate aminotransferase, and both FPCP and PPCP levels (P < 0.05). Compared with those without low muscle mass, low muscle mass group had significantly higher FPG, HbA1c, GA levels (P < 0.05). Body fat (BF, OR = 1.181) was an independent risk factor for low muscle mass. PPCP (OR = 0.497), BMI (OR = 0.548), and female (OR = 0.050) were identified as protective factors for low skeletal muscle. The AUC of BMI was the highest, followed by the PPCP, gender and BF (0.810, 0.675, 0.647, and 0.639, respectively), and the AUC of the combination of the above four parameters reached 0.895. CONCLUSIONS: In this cross-sectional study, BMI, Female, and PPCP associated with T2DM were protective factors for low muscle mass. BF was associated with T2DM and risk factor for low muscle mass.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Aged , Humans , Female , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Glycated Hemoglobin , C-Peptide , Cross-Sectional Studies , China/epidemiology , Serum Albumin/analysis
3.
Exp Eye Res ; 242: 109885, 2024 May.
Article in English | MEDLINE | ID: mdl-38574944

ABSTRACT

The retinal microcirculation system constitutes a unique terminal vessel bed of the systemic circulation, and its perfusion status is directly associated with the neural function of the retina. This vascular network, essential for nourishing various layers of the retina, comprises two primary microcirculation systems: the retinal microcirculation and the choroidal microcirculation, with each system supplying blood to distinct retinal layers and maintaining the associated neural function. The blood flow of those capillaries is regulated via different mechanisms. However, a range of internal and external factors can disrupt the normal architecture and blood flow within the retinal microcirculation, leading to several retinal pathologies, including diabetic retinopathy, macular edema, and vascular occlusions. Metabolic disturbances such as hyperglycemia, hypertension, and dyslipidemia are known to modify retinal microcirculation through various pathways. These alterations are observable in chronic metabolic conditions like diabetes, coronary artery disease, and cerebral microvascular disease due to advances in non-invasive or minimally invasive retinal imaging techniques. Thus, examination of the retinal microcirculation can provide insights into the progression of numerous chronic metabolic disorders. This review discusses the anatomy, physiology and pathophysiology of the retinal microvascular system, with a particular emphasis on the connections between retinal microcirculation and systemic circulation in both healthy states and in the context of prevalent chronic metabolic diseases.


Subject(s)
Metabolic Diseases , Microcirculation , Retinal Vessels , Humans , Microcirculation/physiology , Retinal Vessels/physiopathology , Metabolic Diseases/physiopathology , Retinal Diseases/physiopathology , Regional Blood Flow/physiology
4.
J Stroke Cerebrovasc Dis ; 33(7): 107731, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657831

ABSTRACT

BACKGROUND: Several studies report that radiomics provides additional information for predicting hematoma expansion in intracerebral hemorrhage (ICH). However, the comparison of diagnostic performance of radiomics for predicting revised hematoma expansion (RHE) remains unclear. METHODS: The cohort comprised 312 consecutive patients with ICH. A total of 1106 radiomics features from seven categories were extracted using Python software. Support vector machines achieved the best performance in both the training and validation datasets. Clinical factors models were constructed to predict RHE. Receiver operating characteristic curve analysis was used to assess the abilities of non-contrast computed tomography (NCCT) signs, radiomics features, and combined models to predict RHE. RESULTS: We finally selected the top 21 features for predicting RHE. After univariate analysis, 4 clinical factors and 5 NCCT signs were selected for inclusion in the prediction models. In the training and validation dataset, radiomics features had a higher predictive value for RHE (AUC = 0.83) than a single NCCT sign and expansion-prone hematoma. The combined prediction model including radiomics features, clinical factors, and NCCT signs achieved higher predictive performances for RHE (AUC = 0.88) than other combined models. CONCLUSIONS: NCCT radiomics features have a good degree of discrimination for predicting RHE in ICH patients. Combined prediction models that include quantitative imaging significantly improve the prediction of RHE, which may assist in the risk stratification of ICH patients for anti-expansion treatments.


Subject(s)
Cerebral Hemorrhage , Disease Progression , Hematoma , Predictive Value of Tests , Humans , Male , Cerebral Hemorrhage/diagnostic imaging , Hematoma/diagnostic imaging , Female , Aged , Middle Aged , Retrospective Studies , Reproducibility of Results , Radiographic Image Interpretation, Computer-Assisted , Support Vector Machine , Tomography, X-Ray Computed , Prognosis , Risk Factors , Aged, 80 and over
5.
Diagnostics (Basel) ; 14(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611585

ABSTRACT

BACKGROUND AND OBJECTIVE: The dynamic assessment of disease activity during the follow-up of patients with Crohn's disease (CD) remains a significant challenge. In this study, we aimed to identify the role of dynamic contrast-enhanced ultrasound (DCE-US) in the evaluation of activity of CD. METHODS: In the retrospective study, patients diagnosed with CD in our hospital were included. All the diagnoses were confirmed by clinical symptoms and ileocolonoscopical results. All patients underwent intestinal ultrasound and contrast-enhanced ultrasound (CEUS) examinations within 1 week of the ileocolonoscopy examinations. Acuson Sequoia (Siemens Healthineers, Mountain View, CA, USA) and Resona R9 Elite (Mindray Medical Systems, China) with curved array and Line array transducers were used. The CEUS examination was performed with SonoVue (Bracco SpA, Milan, Italy). DCE-US analysis was performed by UltraOffice (version: 0.3-2010, Mindray Medical Systems, China) software. Two regions of interest (ROIs) were set in the anterior section of the infected bowel wall and its surrounding normal bowel wall 2 cm distant from the inflamed area. Time-intensity curves (TICs) were generated and quantitative perfusion parameters were obtained after curve fittings. The Simple Endoscopic Score for Crohn's disease (SES-CD) was regarded as the reference standard to evaluate the activity of CD. The receiver operating characteristic curve (ROC) analyses were used to determine the diagnostic efficiency of DCE-US quantitative parameters. RESULTS: From March 2023 to November 2023, 52 CD patients were included. According to SES-CD score, all patients were divided into active group with the SES-CD score > 5 (n = 39) and inactive group SES-CD score < 5 (n = 13). Most of the active CD patients showed bowel wall thickness (BWT) > 4.2 mm (97.4%, 38/39) or mesenteric fat hypertrophy (MFH) on intestinal ultrasound (US) scan (69.2%, 27/39). Color Doppler signal of the bowel wall mostly showed spotty or short striped blood flow signal in active CD patients (56.4%, 22/39). According to CEUS enhancement patterns, most active CD patients showed a complete hyperenhancement of the entire intestinal wall (61.5%, 24/39). The TICs of active CD showed an earlier enhancement, higher peak intensity, and faster decline. Among all CEUS quantitative parameters, amplitude-derived parameters peak enhancement (PE), wash-in area under the curve (WiAUC), wash-in rate (WiR), wash-in perfusion index (WiPI), and wash-out rate (WoR) were significantly higher in active CD than in inactive CD (p < 0.05). The combined AUROC of intestinal ultrasound features and DCE-US quantitative perfusion parameters in the diagnosis of active CD was 0.987, with 97.4% sensitivity, 100% specificity, and 98.1% accuracy. CONCLUSIONS: DCE-US with quantitative perfusion parameters is a potential useful noninvasive imaging method to evaluate the activity of Crohn's disease.

6.
Biotechnol J ; 19(4): e2300714, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622793

ABSTRACT

Natural bone tissue features a complex mechanical environment, with cells responding to diverse mechanical stimuli, including fluid shear stress (FSS) and hydrostatic pressure (HP). However, current in vitro experiments commonly employ a singular mechanical stimulus to simulate the mechanical environment in vivo. The understanding of the combined effects and mechanisms of multiple mechanical stimuli remains limited. Hence, this study constructed a mechanical stimulation device capable of simultaneously applying FSS and HP to cells. This study investigated the impact of FSS and HP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and examined the distinctions and interactions between the two mechanisms. The results demonstrated that both FSS and HP individually enhanced the osteogenic differentiation of BMSCs, with a more pronounced effect observed through their combined application. BMSCs responded to external FSS and HP stimulation through the integrin-cytoskeleton and Piezo1 ion channel respectively. This led to the activation of downstream biochemical signals, resulting in the dephosphorylation and nuclear translocation of the intracellular transcription factors Yes Associated Protein 1 (YAP1) and nuclear factor of activated T cells 2 (NFAT2). Activated YAP1 could bind to NFAT2 to enhance transcriptional activity, thereby promoting osteogenic differentiation of BMSCs more effectively. This study highlights the significance of composite mechanical stimulation in BMSCs' osteogenic differentiation, offering guidance for establishing a complex mechanical environment for in vitro functional bone tissue construction.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/physiology , Hydrostatic Pressure , Cell Differentiation/physiology , Transcription Factors/metabolism , Cells, Cultured , Bone Marrow Cells
7.
Biotechnol Prog ; : e3464, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558519

ABSTRACT

Amino acids are vital components of the serum-free medium that influence the expansion and function of NK cells. This study aimed to clarify the relationship between amino acid metabolism and expansion and cytotoxicity of NK cells. Based on analyzing the mino acid metabolism of NK-92 cells and Design of Experiments (DOE), we optimized the combinations and concentrations of amino acids in NK-92 cells culture medium. The results demonstrated that NK-92 cells showed a pronounced demand for glutamine, serine, leucine, and arginine, in which glutamine played a central role. Significantly, at a glutamine concentration of 13 mM, NK-92 cells expansion reached 161.9 folds, which was significantly higher than 55.5 folds at 2.5 mM. Additionally, under higher glutamine concentrations, NK-92 cells expressed elevated levels of cytotoxic molecules, the level of cytotoxic molecules expressed by NK-92 cells was increased and the cytotoxic rate was 68.42%, significantly higher than that of 58.08% under low concentration. In view of the close relationship between glutamine metabolism and intracellular redox state, we investigated the redox status within the cells. This study demonstrated that intracellular ROS levels in higher glutamine concentrations were significantly lower than those under lower concentration cultures with decreased intracellular GSH/GSSG ratio, NADPH/NADP+ ratio, and apoptosis rate. These findings indicate that NK-92 cells exhibit improved redox status when cultured at higher glutamine concentrations. Overall, our research provides valuable insights into the development of serum-free culture medium for ex vivo expansion of NK-92 cells.

8.
Biotechnol J ; 19(3): e2300654, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472089

ABSTRACT

Vigorous ex vivo expansion of NK-92 cells is a pivotal step for clinical adoptive immunotherapy. Interleukin-2 (IL-2) is identified as a key cytokine for NK-92 cells, and it can stimulate cell proliferation after binding to the IL-2 receptor (IL-2R). In this work, the differences in IL-2 consumption and IL-2R expression were investigated between the two culture modes. The results showed that suspension culture favored ex vivo expansion of NK-92 cells compared with static culture. The specific consumption rate of IL-2 in suspension culture was significantly higher than that in static culture. It was further found that the mRNA levels of the two IL-2R subunits remained unchanged in suspension culture, but the proportion of NK-92 cells expressing IL-2Rß was increased, and the fluorescence intensity of IL-2Rß was remarkably enhanced. Meanwhile, the proportion of cells expressing IL-2R receptor complex also increased significantly. Correspondingly, the phosphorylation of STAT5, a pivotal protein in the downstream signaling pathway of IL-2, was up-regulated. Notably, the expression level and colocalization coefficient of related endosomes during IL-2/IL-2R complex endocytosis were markedly elevated, suggesting the enhancement of IL-2 endocytosis. Taken together, these results implied that more IL-2 was needed to support cell growth in suspension culture. Therefore, the culture process was optimized from the perspective of cytokine utilization to further improve the NK-92 cell's expansion ability and function. This study provides valuable insight into the efficient ex vivo expansion of NK-92 cells.


Subject(s)
Interleukin-2 , Killer Cells, Natural , Interleukin-2/metabolism , Killer Cells, Natural/metabolism , Receptors, Interleukin-2/metabolism , Cytokines/metabolism , Cell Membrane
9.
Biotechnol J ; 19(3): e2400063, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528344

ABSTRACT

The effective design of perfusion cell culture is currently challenging regarding balancing the operating parameters associated with the hydrodynamic conditions due to increased system complexity. To address this issue, cellular responses of an industrial CHO cell line to different types of hydrodynamic stress in benchtop perfusion bioreactors originating from agitation, sparging, and hollow fibers (HF) in the cell retention devices were systematically investigated here with the analysis of cell lysis. It was found that cell lysis was very common and most associated with the sparging stress, followed by the HF and lastly the agitation, consequently heavily impacting the estimation of process descriptors related to biomass. The results indicated that the agitation stress led to a reduced cell growth with a shift toward a more productive phenotype, suggesting an energy redirection from biomass formation to product synthesis, whereas the sparging stress had a small impact on the intracellular metabolic flux distribution but increased the cell death rate drastically. For HF stress, a similar cell maintenance profile was found as the sparging while the activity of glycolysis and the TCA cycle was significantly impeded, potentially leading to the lack of energy and thus a substantial decrease in cell-specific productivity. Moreover, a novel concept of volume average shear stress was developed to further understand the relations of different types of stress and the observed responses for an improved insight for the perfusion cell culture.


Subject(s)
Bioreactors , Hydrodynamics , Cricetinae , Animals , Cell Culture Techniques/methods , CHO Cells , Cricetulus , Perfusion
10.
Gerodontology ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539282

ABSTRACT

BACKGROUND: Root caries affect the oral health and quality of life of older adults. This study examines the breadth of global research on this topic, aiming to clarify its expansive scope and to shed light on pertinent trends for new researchers in the field. OBJECTIVE: To identify key advances in root caries research as highlighted in high-quality articles from the Social Science Citation Index (SSCI) as well as to explore emerging trends and perspectives. MATERIALS AND METHODS: Using the Web of Science (WoS) database, we conducted a comprehensive review of articles related to root caries in older adults. Our focus was on finding high-quality SSCI articles, identifying major contributors, journals and research trends and exploring areas such as dentistry, oral surgery and medicine for potential future research. RESULTS: Our analysis included 192 articles, each of which was subjected to bibliometric and VOS viewer evaluations. The results revealed a concentration of studies in dentistry, oral surgery and medicine, with gaps identified in areas like anthropology, biochemistry, molecular biology and chemistry. A notable deficiency was found in root caries management. CONCLUSION: We discuss research gaps and propose future directions based on our findings, emphasising interdisciplinary research approaches.

11.
Vaccines (Basel) ; 12(3)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38543921

ABSTRACT

Compared with the traditional vaccine produced in embryonated chicken eggs, cell-based manufacturing represented by the Madin-Darby canine kidney (MDCK) cell line has a larger production scale and reduces the risk of egg shortage in a pandemic. Establishing a culture system that enables high production of the influenza virus is a key issue in influenza vaccine production. Here, a serum-free suspension culture of MDCK (sMDCK) cells was obtained from adherent MDCK (aMDCK) cells by direct adaptation. Viral infection experiments showed that viral yields of influenza A/B virus in sMDCK cells were higher than in aMDCK cells. Transcriptome analysis revealed that numerous interferon-stimulated genes (ISGs) exhibited reduced expression in sMDCK cells. To further clarify the mechanism of high viral production in sMDCK cells, we demonstrated the antiviral role of RIG-I and IFIT3 in MDCK cells by knockdown and overexpression experiments. Furthermore, suppression of the JAK/STAT pathway enhances the viral accumulation in aMDCK cells instead of sMDCK cells, suggesting the reduction in the JAK/STAT pathway and ISGs promotes viral replication in sMDCK cells. Taken together, we elucidate the relationship between the host innate immune response and the high viral productive property of sMDCK cells, which helps optimize cell production processes and supports the production of cell-based influenza vaccines.

12.
Horm Metab Res ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346689

ABSTRACT

The aim of the study was to investigate whether the biomarkers for bone turnover could rapidly recover during the period of diabetic ketoacidosis (DKA). Bone turnover biomarkers, including 25-hydroxyvitamin D3, N-terminal middle molecular fragment of osteocalcin (NMID), and ß-C terminal cross-linking telopeptide of type 1 collagen were evaluated using in-patient data (n=627) from Shanghai Pudong Hospital from 2018-2022. The comparison was performed between type 2 diabetes (T2D only) (n=602) and DKA (n=25), in which we checked the bone turnover markers at pre-treatment and recovery. After matching by body mass index (BMI), we found that except for 25-OH-VitD3, the age difference, indices of glucose metabolism, and bone turnover were significant between the 2 groups (p<0.05). We found only a significant restoration of NMID (p<0.001). NMID and ß-CTX, when compared with T2D, showed overt distinction between recovery and T2D (p<0.05). In addition, the investigations demonstrated a substantial difference between 25-OH-VitD3 in males and NMID in females, regardless of age (p<0.05). Multilinear regression analysis revealed that 2 hours postprandial plasma C-peptide was an independent predictor of the NMID in both pre-treatment (ß=0.58, p=0.003) and recovery (ß=0.447, p=0.025), although sex was significant in pre-treatment (ß=-0.444, p=0.020). Finally, we found that only age variation affected DKA's fasting plasma glucose level (p<0.05). The study revealed that the bone turnover of DKA is significantly different in pre-treatment and recovery; however, NMID might recover quickly if the patients received appropriate treatment. Importantly, pancreatic function plays a critical role in changing bone turnover biomarkers.

13.
Pacing Clin Electrophysiol ; 47(4): 518-524, 2024 04.
Article in English | MEDLINE | ID: mdl-38407374

ABSTRACT

BACKGROUND: Left bundle branch block (LBBB) and atrial fibrillation (AF) are commonly coexisting conditions. The impact of LBBB on catheter ablation of AF has not been well determined. This study aims to explore the long-term outcomes of patients with AF and LBBB after catheter ablation. METHODS: Forty-two patients with LBBB of 11,752 patients who underwent catheter ablation of AF from 2011 to 2020 were enrolled as LBBB group. After propensity score matching in a 1:4 ratio, 168 AF patients without LBBB were enrolled as non-LBBB group. Late recurrence and a composite endpoint of stroke, all-cause mortality, and cardiovascular hospitalization were compared between the two groups. RESULTS: Late recurrence rate was significantly higher in the LBBB group than that in the non-LBBB group (54.8% vs. 31.5%, p = .034). Multivariate analysis showed that LBBB was an independent risk factor for late recurrence after catheter ablation of AF (hazard ratio [HR] 2.19, 95% confidence interval [CI] 1.09-4.40, p = .031). LBBB group was also associated with a significantly higher incidence of the composite endpoint (21.4% vs. 6.5%, HR 3.98, 95% CI 1.64-9.64, p = .002). CONCLUSIONS: LBBB was associated with a higher risk for late recurrence and a higher incidence of composite endpoint in the patients underwent catheter ablation.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Stroke , Humans , Bundle-Branch Block/etiology , Risk Factors , Stroke/etiology , Catheter Ablation/adverse effects , Treatment Outcome , Recurrence
14.
Clin Physiol Funct Imaging ; 44(3): 251-259, 2024 May.
Article in English | MEDLINE | ID: mdl-38356324

ABSTRACT

PURPOSE: To quantitatively investigate the effect of myocardial bridge (MB) in the left anterior descending artery (LAD) on the fractional flow reserve (FFR). MATERIALS AND METHODS: Three-hundred patients with LAD MB who had undergone coronary artery CT angiography (CCTA) were retrospectively enroled, and 104 normal patients were enroled as the control. The CCTA-derived fractional flow reserve (FFRCT) was measured at the LAD 10 mm proximal (FFR1) and 20-40 mm distal (FFR3) to the MB and at the MB location (FFR2). RESULTS: FFR2 and FFR3 of the MB (with BM only) and MBLA (with both MB and atherosclerosis) groups were significantly (p < 0.01) lower than those of the control. The FFR3 distal to the MB was significantly lower (p < 0.01) than that of the control. The FFRCT of the whole LAD in the MBLA group was significantly (p < 0.05) lower than that of the MB and control group (p < 0.05). MB length (OR 1.061) and MB muscle index (odds ratio or OR 1.007) were two risk factors for abnormal FFRCT, and MB length was a significant independent risk factor for abnormal FFRCT (OR = 1.077). LAD stenosis degree was a risk factor for abnormal FFRCT values (OR 3.301, 95% confidence interval [CI] 1.441-7.562, p = 0.005) and was also a significant independent risk factor (OR = 3.369, 95% CI: 1.392-8.152; p = 0.007) for abnormal FFRCT. CONCLUSION: MB significantly affects the FFRCT of distal coronary artery. For patients with MB without atherosclerosis, the MB length is a risk factor significantly affecting FFRCT, and for patients with MB accompanied by atherosclerosis, LAD stenotic severity is an independent risk factor for FFRCT.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Bridging , Humans , Computed Tomography Angiography/methods , Coronary Artery Disease/diagnostic imaging , Fractional Flow Reserve, Myocardial/physiology , Coronary Vessels/diagnostic imaging , Retrospective Studies , Myocardial Bridging/diagnostic imaging , Predictive Value of Tests , Coronary Stenosis/diagnostic imaging , Coronary Angiography/methods , Severity of Illness Index
15.
J Biosci Bioeng ; 137(3): 221-229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38220502

ABSTRACT

Efficiently expanding Chinese hamster ovary (CHO) cells, which serve as the primary host cells for recombinant protein production, have gained increasing industrial significance. A significant hurdle in stable cell line development is the low efficiency of the target gene integrated into the host genome, implying the necessity for an effective screening and selection procedure to separate these stable cells. In this study, the genes of phenylalanine hydroxylase (PAH) and pterin 4 alpha carbinolamine dehydratase 1 (PCBD1), which are key enzymes in the tyrosine synthesis pathway, were utilized as selection markers and transduced into host cells together with the target genes. This research investigated the enrichment effect of this system and advanced further in understanding its benefits for cell line development and rCHO cell culture. A novel tyrosine-based selection system that only used PCBD1 as a selection marker was designed to promote the enrichment effect. Post 9 days of starvation, positive transductants in the cell pool approached 100%. Applied the novel tyrosine-based selection system, rCHO cells expressing E2 protein were generated and named CHO TS cells. It could continue to grow, and the yield of E2 achieved 95.95 mg/L in a tyrosine-free and chemically-defined (CD) medium. Herein, we introduced an alternative to antibiotic-based selections for the establishment of CHO cell lines and provided useful insights for the design and development of CD medium.


Subject(s)
Anti-Bacterial Agents , Tyrosine , Animals , Cricetinae , CHO Cells , Cricetulus , Cell Culture Techniques
16.
Diabetes Metab Syndr Obes ; 17: 393-405, 2024.
Article in English | MEDLINE | ID: mdl-38283634

ABSTRACT

Background: Despite the demonstrated benefits of insulin therapy, many general practitioners (GPs) are hesitant to administer it due to challenges such as a lack of knowledge, time constraints, and patient reluctance. The barriers that prevent a GP from initiating insulin therapy may vary in comparison to those encountered by a diabetic patient; this aspect of clinical research in the South Shanghai metropolitan area has received limited attention so far. Objective: This is a 6-months of interventional analytic cohort study. The prime aim is to investigate the barriers general practitioners (GPs) face when initiating insulin therapy for patients with type 2 diabetes (T2D). Materials and Methods: As part of a training program, all 189 registered GPs in Nanhui Health Service Center in Shanghai were given a structured online-multi-choice questionnaire before and after a six-month interval, during which the GPs received sessions of training on insulin therapy either on theoretic classes or clinical practices. Results: Before and after training, via the methods of multiple-response analyses, the results showed that social, GP's, and patient barriers to initiating insulin therapy were comparable. However, through the crosstabs chi-square test, we found significant changes in the basal insulin initiation following the prescription of the senior endocrinologists, the titration of insulin, and the need for training (p<0.05). The Spearman analyses discovered significant changes associated with the cause of initial insulin refusal and the factors influencing insulin administration. Finally, the binary logistic regression analysis revealed that distinct causes such as social factors, insurance, GP experience, insulin dosage calculation, follow-up, and patients' feelings are related to insulin treatment application before and after training. Conclusion: According to this study, training increased general practitioners' confidence in initiating insulin administration, especially basal insulin. General practitioners require additional education on insulin therapy, with a potential need for increased face-to-face training for insulin initiation.

17.
J Food Sci ; 89(2): 851-865, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38174744

ABSTRACT

Cell-based meat technology provides an effective method to meet the demand for meat, while also posing a huge challenge to the expansion of myoblasts. It is difficult to develop serum-free medium suitable for long-term culture and large-scale expansion of myoblasts, which causes limited understanding of myoblasts expansion. Therefore, this study used C2C12 myoblasts as model cells and developed a serum-free medium for large-scale expansion of myoblasts in vitro using the Plackett-Burman design. The serum-free medium can support short-term proliferation and long-term passage of C2C12 myoblasts, while maintaining myogenic differentiation potential well, which is comparable to those of growth medium containing 10% fetal bovine serum. Based on the C2C12 myoblasts microcarriers serum-free culture system established in this study, the actual expansion folds of myoblasts can reach 43.55 folds after 7 days. Moreover, cell-based meat chunks were preliminarily prepared using glutamine transaminase and edible pigments. The research results provide reference for serum-free culture and large-scale expansion of myoblasts in vitro, laying the foundation for cell-based meat production. PRACTICAL APPLICATION: This study developed a serum-free medium suitable for long-term passage of myoblasts and established a microcarrier serum-free culture system for myoblasts, which is expected to solve the problem of serum-free culture and large-scale expansion of myoblasts in cell culture meat production.


Subject(s)
Cell Culture Techniques , In Vitro Meat , Cell Proliferation , Cell Culture Techniques/methods , Myoblasts , Cell Differentiation
18.
Cryobiology ; 114: 104835, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38070820

ABSTRACT

Cryopreservation is a crucial step in the supply process of off-the-shelf chimeric antigen receptor engineered natural killer (CAR-NK) cell products. Concerns have been raised over the clinical application of dimethyl sulfoxide (Me2SO) due to the potential for adverse reactions following infusion and limited cell-specific cytotoxic effects if misapplied. In this study, we developed a Me2SO-free cryopreservation medium specifically tailored for CAR-NK cells to address this limitation. The cryopreservation medium was formulated using human serum albumin (HSA) and glycerol as the base components. Following initial screening of seven clinically-compatible solutions, four with cryoprotective properties were identified. These were combined and optimized into a single formulation: IF-M. The viability, phenotype, and function of CAR-NK cells were evaluated after short-term and long-term cryopreservation to assess the effectiveness of IF-M, with Me2SO serving as the control group. The viability and recovery of CAR-NK cells in the IF-M group were significantly higher than those in the Me2SO group within 90 days of cryopreservation. Moreover, after 1 year of cryopreservation the cytotoxic capacity of CAR-NK cells cryopreserved with IF-M was comparable to that of fresh CAR-NK cells and significantly superior to that of CAR-NK cells cryopreserved in Me2SO. The CD107a expression intensity of CAR-NK cells in IF-M group was significantly higher than that of Me2SO group. No statistical differences were observed in other indicators under different cryopreservation times. These results underscore the robustness of IF-M as a suitable replacement for traditional Me2SO-based cryopreservation medium for the long-term cryopreservation and clinical application of off-the-shelf CAR-NK cells.


Subject(s)
Cryopreservation , Receptors, Chimeric Antigen , Humans , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism , Receptors, Chimeric Antigen/genetics , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/metabolism , Killer Cells, Natural , Cell Survival
19.
CNS Neurosci Ther ; 30(3): e14472, 2024 03.
Article in English | MEDLINE | ID: mdl-37721405

ABSTRACT

BACKGROUND AND OBJECTIVE: Inflammation has emerged as a prominent risk factor for cerebral small vessel disease (CSVD). However, the specific association between various inflammatory biomarkers and the development of CSVD remains unclear. Serine proteinase inhibitor A3 (SERPINA3), Matrix metalloproteinase-9 (MMP-9), Tissue inhibitor metalloproteinase-1 (TIMP-1), Monocyte Chemoattractant Protein-1 (MCP-1) are several inflammatory biomarkers that are potentially involved in the development of CSVD. In this present study, we aimed to investigate the relationship between candidate molecules and CSVD features. METHOD: The concentration of each biomarker was measured in 79 acute ischemic stroke patients admitted within 72 h after symptom onset. The associations between blood levels of inflammatory markers and CSVD score were investigated, as well as each CSVD feature, including white matter hyperintensities (WMH), lacunes, and enlarged perivascular spaces (EPVS). RESULTS: The mean age was 69.0 ± 11.8 years, and 65.8% of participants were male. Higher SERPINA3 level (>78.90 ng/mL) was significantly associated with larger WMH volume and higher scores on Fazekas's scale in all three models. Multiple regression analyses revealed the linear association between absolute WMH burden and SERPINA3 level, especially in model 3 (ß = 0.14; 95% confidence interval [CI], 0.04-0.24 ; p = 0.008 ). Restricted cubic spline regression demonstrated a dose-response relationship between SERPINA3 level and larger WMH volume (p nonlineariy = 0.0366 and 0.0378 in model 2 and mode 3, respectively). Using a receiving operating characteristic (ROC) curve, plasma SERPINA3 level of 64.15 ng/mL distinguished WMH >7.8 mL with the highest sensitivity and specificity (75.92% and 60%, respectively, area under curve [AUC] = 0.668, p = 0.0102). No statistically significant relationship has been found between other candidate biomarkers and CSVD features. CONCLUSION: In summary, among four inflammatory biomarkers that we investigated, SERPINA3 level at baseline was associated with WMH severity, which revealed a novel biomarker for CSVD and validated its relationship with inflammation and endothelial dysfunction.


Subject(s)
Cerebral Small Vessel Diseases , Ischemic Stroke , Serpins , Humans , Male , Middle Aged , Aged , Aged, 80 and over , Female , Ischemic Stroke/complications , Magnetic Resonance Imaging , Serine Proteinase Inhibitors , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Biomarkers , Inflammation/diagnostic imaging , Inflammation/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...