Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 527
Filter
1.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38856683

ABSTRACT

Magnetic property (e.g. spin order) of support is of great importance in the rational design of heterogeneous catalysts. Herein, we have taken the Ni-supported ferromagnetic (FM) CrBr3 support (Nix/CrBr3) to thoroughly investigate the effect of spin-order on electrocatalytic oxygen reduction reaction (ORR) via spin-polarized density functional theory calculations. Specifically, Ni loading induces anti-FM coupling in Ni-Cr, leading to a transition from FM-to-ferrimagnetic (FIM) properties, while Ni-Ni metallic bonds create a robust FM direct exchange, benefiting the improvement of the phase transition temperature. Interestingly, with the increase in Ni loading, the easy magnetic axis changes from out-of-plane (2D-Heisenberg) to in-plane (2D-XY). The adsorption properties of Nix/CrBr3, involving O2 adsorption energy and configuration, are not governed by the d-band center but strongly correlate with magnetic anisotropy. It is noteworthy that the applied potential and electrolyte acidity triggers spin-order transition phenomena during the ORR and induces the catalytic pathway change from 4e- ORR to 2e- ORR with the excellent onset potential of 0.93 V/reversible hydrogen electrode, comparable to the existing most excellent noble-metal catalysts. Generally, these findings offer new avenues to understand and design heterogeneous catalysts with magnetic support.

2.
Clinics (Sao Paulo) ; 79: 100383, 2024.
Article in English | MEDLINE | ID: mdl-38797123

ABSTRACT

BACKGROUND: Neonatal Intrahepatic Cholestasis (NICCD), as the early-age stage of Citrin deficiency involving liver dysfunction, lacks efficient diagnostic markers. Procalcitonin (PCT) has been identified as a biomarker for infection as well as various organ damage. This study aimed to explore the potential of PCT as a biomarker for NICCD. METHODS: In a single-center retrospective case-control study. Serum PCT concentrations before and after treatment of 120 NICCD patients, as the study group, were compared to the same number of cholestatic hepatitis patients, as the control group. The potential value of PCT to discriminate NICCD from control disease was further explored using Receiver Operating Characteristic (ROC) curve analysis and compared to those of other inflammatory markers. RESULTS: There was a significantly higher level of PCT in NICCD patients than in the control group. PCT concentrations were only weakly correlated with neutrophil counts and CRP levels (p ˂ 0.05). At a cut-off value of 0.495 ng/mL, PCT exhibited a significantly higher diagnostic value compared to other inflammatory markers for discriminating NICCD from the control, with a sensitivity of 90.8 % and specificity of 98.3 %. CONCLUSION: PCT might be used as an initial biomarker to discriminate children with NICCD from another hepatitis disease.


Subject(s)
Biomarkers , Cholestasis, Intrahepatic , Citrullinemia , Procalcitonin , ROC Curve , Humans , Procalcitonin/blood , Biomarkers/blood , Retrospective Studies , Male , Female , Case-Control Studies , Cholestasis, Intrahepatic/blood , Cholestasis, Intrahepatic/diagnosis , Citrullinemia/blood , Citrullinemia/complications , Citrullinemia/diagnosis , Infant , Infant, Newborn , Sensitivity and Specificity , C-Reactive Protein/analysis , Reference Values
3.
J Phys Chem Lett ; 15(22): 5887-5895, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38804881

ABSTRACT

Herein, we theoretically investigate the effect of magnetic orders on electrocatalytic oxygen reduction reaction (ORR) properties on the Fe-N4 site-embedded two-dimensional (2D) covalent organic framework (Fe-N4@COF-C3N2) under realistic environments. The Fe-N4@COF-C3N2 shows a 2D square-lattice (sql) topology with three magnetic order states: one ferromagnetic state (FM) and two antiferromagnetic states (AFM1 and AFM2). Specially, the electrocatalyst in the AFM2 state shows a remarkable onset potential of 0.80 V/reversible hydrogen electrode (RHE) at pH 1, superior to the existing most excellent noble-metal catalysts. Thermodynamically, the onset potential for the 4e- ORR is 0.64 V/RHE at pH 1, with a magnetic state transition process of FM → AFM1 → FM → FM → FM, while at pH 13, the onset potential for the 4e- ORR is 0.54 V/RHE, with the magnetic transition process of FM → FM → AFM1 → FM → FM. Generally, this finding will provide new avenues to rationally design the Fe-N4 electrocatalyst.

4.
Front Genet ; 15: 1315677, 2024.
Article in English | MEDLINE | ID: mdl-38725483

ABSTRACT

To cope with the damage from oxidative stress caused by hypoxia, mammals have evolved a series of physiological and biochemical traits, including antioxidant ability. Although numerous research studies about the mechanisms of hypoxia evolution have been reported, the molecular mechanisms of antioxidase-related genes in mammals living in different environments are yet to be completely understood. In this study, we constructed a dataset comprising 7 antioxidase-related genes (CAT, SOD1, SOD2, SOD3, GPX1, GPX2, and GPX3) from 43 mammalian species to implement evolutionary analysis. The results showed that six genes (CAT, SOD1, SOD2, SOD3, GPX1, and GPX3) have undergone divergent evolution based on the free-ratio (M1) model. Furthermore, multi-ratio model analyses uncovered the divergent evolution between hypoxic and non-hypoxic lineages, as well as various hypoxic lineages. In addition, the branch-site model identified 9 positively selected branches in 6 genes (CAT, SOD1, SOD2, SOD3, GPX2, and GPX3) that contained 35 positively selected sites, among which 31 positively selected sites were identified in hypoxia-tolerant branches, accounting for 89% of the total number of positively selected sites. Interestingly, 65 parallel/convergent sites were identified in the 7 genes. In summary, antioxidase-related genes are subjected to different selective pressures among hypoxia-tolerant species living in different habitats. This study provides a valuable insight into the molecular evolution of antioxidase-related genes in hypoxia evolution in mammals.

6.
Br J Pharmacol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698737

ABSTRACT

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.

7.
Small Methods ; : e2400302, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634222

ABSTRACT

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) have gained interest as candidates for the bottom cell of all-perovskite tandem solar cells due to their broad absorption of the solar spectrum. A notable challenge arises from the prevalent use of the hole transport layer, PEDOT:PSS, known for its inherently high doping level. This high doping level can lead to interfacial recombination, imposing a significant limitation on efficiency. Herein, NaOH is used to dedope PEDOT:PSS, with the aim of enhancing the efficiency of Sn-Pb PSCs. Secondary ion mass spectrometer profiles indicate that sodium ions diffuse into the perovskite layer, improving its crystallinity and enlarging its grains. Comprehensive evaluations, including photoluminescence and nanosecond transient absorption spectroscopy, confirm that dedoping significantly reduces interfacial recombination, resulting in an open-circuit voltage as high as 0.90 V. Additionally, dedoping PEDOT:PSS leads to increased shunt resistance and high fill factor up to 0.81. As a result of these improvements, the power conversion efficiency is enhanced from 19.7% to 22.6%. Utilizing NaOH to dedope PEDOT:PSS also transitions its nature from acidic to basic, enhancing stability and exhibiting less than a 7% power conversion efficiency loss after 1176 h of storage in N2 atmosphere.

8.
Acta Pharmacol Sin ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641746

ABSTRACT

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.

9.
Article in English | MEDLINE | ID: mdl-38669522

ABSTRACT

BACKGROUND: The progression and persistence of myocardial ischemia/reperfusion injury (MI/RI) are strongly linked to local inflammatory responses and oxidative stress. Cyclophilin A (CypA), a pro-inflammatory factor, is involved in various cardiovascular diseases. However, the role and mechanism of action of CypA in MI/RI are still not fully understood. METHODS: We used the Gene Expression Omnibus (GEO) database for bioinformatic analysis. We collected blood samples from patients and controls for detecting the levels of serum CypA using enzyme-linked immunosorbent assay (ELISA) kits. We then developed a myocardial ischemia/reperfusion (I/R) injury model in wild-type (WT) mice and Ppia-/- mice. We utilized echocardiography, hemodynamic measurements, hematoxylin and eosin (H&E) staining, immunohistochemistry, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine the role of CypA in myocardial I/R injury. Finally, we conducted an in vitrostudy, cell transfection, flow cytometry, RNA interference, and a co-immunoprecipitation assay to clarify the mechanism of CypA in aggravating cardiomyocyte apoptosis. RESULTS: We found that CypA inhibited TXNIP degradation to enhance oxidative stress-induced cardiomyocyte apoptosis during MI/RI. By comparing and analyzing CypA expression in patients with coronary atherosclerotic heart disease and in healthy controls, we found that CypA was upregulated in patients with Coronary Atmospheric Heart Disease, and its expression was positively correlated with Gensini scores. In addition, CypA deficiency decreased cytokine expression, oxidative stress, and cardiomyocyte apoptosis in I/R-treated mice, eventually alleviating cardiac dysfunction. CypA knockdown also reduced H2O2-induced apoptosis in H9c2 cells. Mechanistically, we found that CypA inhibited K48-linked ubiquitination mediated by atrophin-interacting protein 4 (AIP4) and proteasomal degradation of TXNIP, a thioredoxin-binding protein that mediates oxidative stress and induces apoptosis. CONCLUSION: These findings highlight the critical role CypA plays in myocardial injury caused by oxidative stress-induced apoptosis, indicating that CypA can be a viable biomarker and a therapeutic target candidate for MI/RI.

10.
World J Diabetes ; 15(2): 260-274, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38464366

ABSTRACT

BACKGROUND: Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy (DN). The regulatory relationship between long noncoding RNAs (lncRNAs) and podocyte apoptosis has recently become another research hot spot in the DN field. AIM: To investigate whether lncRNA protein-disulfide isomerase-associated 3 (Pdia3) could regulate podocyte apoptosis through miR-139-3p and revealed the underlying mechanism. METHODS: Using normal glucose or high glucose (HG)-cultured podocytes, the cellular functions and exact mechanisms underlying the regulatory effects of lncRNA Pdia3 on podocyte apoptosis and endoplasmic reticulum stress (ERS) were explored. LncRNA Pdia3 and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction. Relative cell viability was detected through the cell counting kit-8 colorimetric assay. The podocyte apoptosis rate in each group was measured through flow cytometry. The interaction between lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase reporter assay. Finally, western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p. RESULTS: The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes. Next, lncRNA Pdia3 was involved in HG-induced podocyte apoptosis. Furthermore, the dual luciferase reporter assay confirmed the direct interaction between lncRNA Pdia3 and miR-139-3p. LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS through miR-139-3p in HG-cultured podocytes. CONCLUSION: Taken together, this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p, which might provide a potential therapeutic target for DN.

11.
Toxins (Basel) ; 16(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535814

ABSTRACT

Shiga-toxin-producing Escherichia coli (STEC) causes a wide spectrum of diseases including hemorrhagic colitis and hemolytic uremic syndrome (HUS). The current Food Safety Inspection Service (FSIS) testing methods for STEC use the Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) protocol, which includes enrichment, cell plating, and genomic sequencing and takes time to complete, thus delaying diagnosis and treatment. We wanted to develop a rapid, sensitive, and potentially portable assay that can identify STEC by detecting Shiga toxin (Stx) using the CANARY (Cellular Analysis and Notification of Antigen Risks and Yields) B-cell based biosensor technology. Five potential biosensor cell lines were evaluated for their ability to detect Stx2. The results using the best biosensor cell line (T5) indicated that this biosensor was stable after reconstitution with assay buffer covered in foil at 4 °C for up to 10 days with an estimated limit of detection (LOD) of ≈0.1-0.2 ng/mL for days up to day 5 and ≈0.4 ng/mL on day 10. The assay detected a broad range of Stx2 subtypes, including Stx2a, Stx2b, Stx2c, Stx2d, and Stx2g but did not cross-react with closely related Stx1, abrin, or ricin. Additionally, this assay was able to detect Stx2 in culture supernatants of STEC grown in media with mitomycin C at 8 and 24 h post-inoculation. These results indicate that the STEC CANARY biosensor developed in this study is sensitive, reproducible, specific, rapid (≈3 min), and may be applicable for surveillance of the environment and food to protect public health.


Subject(s)
Abrin , Shiga Toxin 2 , Escherichia coli , Shiga Toxin , Biological Assay
12.
Biochem Biophys Res Commun ; 706: 149767, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38484570

ABSTRACT

Microglial activation is a critical factor in the pathogenesis and progression of neuroinflammatory diseases. Mild hypothermia, known for its neuroprotective properties, has been shown to alleviate microglial activation. In this study, we explore the differentially expressed (DE) mRNAs and long non-coding RNAs (lncRNAs) in BV-2 microglial cells under different conditions: normal temperature (CN), mild hypothermia (YT), normal temperature with lipopolysaccharide (LPS), and mild hypothermia with LPS (LPS + YT). Venn analysis revealed 119 DE mRNAs that were down-regulated in the LPS + YT vs LPS comparison but up-regulated in the CN vs LPS comparison, primarily enriched in Gene Ontology terms related to immune and inflammatory responses. Furthermore, through Venn analysis of YT vs CN and LPS + YT vs LPS comparisons, we identified 178 DE mRNAs and 432 DE lncRNAs. Among these transcripts, we validated the expression of Tent5c at the protein and mRNA levels. Additionally, siRNA-knockdown of Tent5c attenuated the expression of pro-inflammatory genes (TNF-α, IL-1ß, Agrn, and Fpr2), cellular morphological changes, NLRP3 and p-P65 protein levels, immunofluorescence staining of p-P65 and number of cells with ASC-speck induced by LPS. Furthermore, Tent5c overexpression further potentiated the aforementioned indicators in the context of mild hypothermia with LPS treatment. Collectively, our findings highlight the significant role of Tent5c down-regulation in mediating the anti-inflammatory effects of mild hypothermia.


Subject(s)
Hypothermia , RNA, Long Noncoding , Humans , Lipopolysaccharides/pharmacology , Down-Regulation , Microglia/metabolism , Hypothermia/metabolism , RNA, Long Noncoding/metabolism
13.
World J Gastrointest Oncol ; 16(2): 343-353, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38425394

ABSTRACT

BACKGROUND: The controlling nutritional status (CONUT) score effectively reflects a patient's nutritional status, which is closely related to cancer prognosis. This study investigated the relationship between the CONUT score and prognosis after radical surgery for colorectal cancer, and compared the predictive ability of the CONUT score with other indexes. AIM: To analyze the predictive performance of the CONUT score for the survival rate of colorectal cancer patients who underwent potentially curative resection. METHODS: This retrospective analysis included 217 patients with newly diagnosed colorectal. The CONUT score was calculated based on the serum albumin level, total lymphocyte count, and total cholesterol level. The cutoff value of the CONUT score for predicting prognosis was 4 according to the Youden Index by the receiver operating characteristic curve. The associations between the CONUT score and the prognosis were performed using Kaplan-Meier curves and Cox regression analysis. RESULTS: Using the cutoff value of the CONUT score, patients were stratified into CONUT low (n = 189) and CONUT high groups (n = 28). The CONUT high group had worse overall survival (OS) (P = 0.013) and relapse-free survival (RFS) (P = 0.015). The predictive performance of CONUT was superior to the modified Glasgow prognostic score, the prognostic nutritional index, and the neutrophil-to-lymphocyte ratio. Meanwhile, the predictive performances of CONUT + tumor node metastasis (TNM) stage for 3-year OS [area under the receiver operating characteristics curve (AUC) = 0.803] and 3-year RFS (AUC = 0.752) were no less than skeletal muscle mass index (SMI) + TNM stage. The CONUT score was negatively correlated with SMI (P < 0.01). CONCLUSION: As a nutritional indicator, the CONUT score could predict long-term outcomes after radical surgery for colorectal cancer, and its predictive ability was superior to other indexes. The correlation between the CONUT score and skeletal muscle may be one of the factors that play a predictive role.

14.
Biomolecules ; 14(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38397385

ABSTRACT

The regulation of plant biomass degradation by fungi is critical to the carbon cycle, and applications in bioproducts and biocontrol. Trichoderma harzianum is an important plant biomass degrader, enzyme producer, and biocontrol agent, but few putative major transcriptional regulators have been deleted in this species. The T. harzianum ortholog of the transcriptional activator XYR1/XlnR/XLR-1 was deleted, and the mutant strains were analyzed through growth profiling, enzymatic activities, and transcriptomics on cellulose. From plate cultures, the Δxyr1 mutant had reduced growth on D-xylose, xylan, and cellulose, and from shake-flask cultures with cellulose, the Δxyr1 mutant had ~90% lower ß-glucosidase activity, and no detectable ß-xylosidase or cellulase activity. The comparison of the transcriptomes from 18 h shake-flask cultures on D-fructose, without a carbon source, and cellulose, showed major effects of XYR1 deletion whereby the Δxyr1 mutant on cellulose was transcriptionally most similar to the cultures without a carbon source. The cellulose induced 43 plant biomass-degrading CAZymes including xylanases as well as cellulases, and most of these had massively lower expression in the Δxyr1 mutant. The expression of a subset of carbon catabolic enzymes, other transcription factors, and sugar transporters was also lower in the Δxyr1 mutant on cellulose. In summary, T. harzianum XYR1 is the master regulator of cellulases and xylanases, as well as regulating carbon catabolic enzymes.


Subject(s)
Cellulases , Hypocreales , Biomass , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Profiling , Hypocreales/metabolism , Cellulose , Carbon
15.
Anesthesiology ; 140(1): 102-115, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37812765

ABSTRACT

BACKGROUND: Multiple neural structures involved in maintaining wakefulness have been found to promote arousal from general anesthesia. The medial septum is a critical region that modulates arousal behavior. This study hypothesized that glutamatergic neurons in the medial septum play a crucial role in regulating states of consciousness during sevoflurane general anesthesia. METHODS: Adult male mice were used in this study. The effects of sevoflurane anesthesia on neuronal activity were determined by fiber photometry. Lesions and chemogenetic manipulations were used to study the effects of the altered activity of medial septal glutamatergic neurons on anesthesia induction, emergence, and sensitivity to sevoflurane. Optogenetic stimulation was used to observe the role of acute activation of medial septal glutamatergic neurons on cortical activity and behavioral changes during sevoflurane-induced continuous steady state of general anesthesia and burst suppression state. RESULTS: The authors found that medial septal glutamatergic neuronal activity decreased during sevoflurane anesthesia induction and recovered in the early period of emergence. Chemogenetic activation of medial septal glutamatergic neurons prolonged the induction time (mean ± SD, hM3Dq-clozapine N-oxide vs. hM3Dq-saline, 297.5 ± 60.1 s vs. 229.4 ± 29.9 s, P < 0.001, n = 11) and decreased the emergence time (53.2 ± 11.8 s vs. 77.5 ± 33.5 s, P = 0.025, n = 11). Lesions or chemogenetic inhibition of these neurons produced the opposite effects. During steady state of general anesthesia and deep anesthesia-induced burst suppression state, acute optogenetic activation of medial septal glutamatergic neurons induced cortical activation and behavioral emergence. CONCLUSIONS: The study findings reveal that activation of medial septal glutamatergic neurons has arousal-promoting effects during sevoflurane anesthesia in male mice. The activation of these neurons prolongs the induction and accelerates the emergence of anesthesia.


Subject(s)
Consciousness , Neurons , Mice , Animals , Male , Sevoflurane/pharmacology , Wakefulness/physiology , Anesthesia, General
16.
Cancer Biol Ther ; 25(1): 2284849, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38051132

ABSTRACT

OBJECTIVE: This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism. METHODS: GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 µg/mL). AGS cells treated with 200 µg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (n = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded. RESULTS: RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects. CONCLUSION: RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.


Subject(s)
Ferroptosis , Panax , Stomach Neoplasms , Animals , Mice , Stomach Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Down-Regulation , Aquaporin 3/genetics , Aquaporin 3/metabolism , Mice, Nude , Cell Proliferation , Panax/metabolism , Cell Line, Tumor
17.
J Phys Chem Lett ; 14(50): 11447-11456, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38085811

ABSTRACT

Herein, combining density functional theory (DFT) calculations with nonadiabatic molecular dynamics (NAMD), we built a computational framework to rationally screen from a series of 2D conjugated carbon nitrides (CNs) to match with B4C3, resulting in the excellent direct Z-scheme photocatalyst (B4C3/C6N6) for overall water splitting (OWS). Studies on interface engineering and ultrafast dynamics of carrier recombination-transfer show that in the B4C3/C6N6 system, compared with the slower interlayer migration process of carriers, strong nonadiabatic coupling and longer quantum decoherence time accelerates weak carrier interlayer recombination on a subpicosecond time scale, enabling simultaneous triggering of hydrogen evolution reaction (HER) with ΔG = -0.23 eV and spontaneous oxygen evolution reaction (OER) in the absence of sacrificial or cocatalysts. In general, our work will promote the design of efficient direct Z-scheme photocatalysts from an ultrafast dynamics perspective.

18.
Eur Radiol ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37889269

ABSTRACT

OBJECTIVES: To investigate the incremental prognostic value of left ventricular (LV) entropy in a large multi-center population with coronary atherosclerotic heart disease (CAD). BACKGROUND: Current risk stratification of patients with CAD is imprecise and not accurate enough. METHODS: A total of 314 CAD patients who underwent cardiovascular magnetic resonance (CMR) late gadolinium enhancement (LGE) at two medical centers in China between October 2015 and July 2022 were included in this study. Additionally, the 193 patients under 3.0-T field also underwent CMR T1 mapping. LV entropy and extracellular volume (ECV) were calculated from the LGE image of LV myocardium, and major adverse cardiac events (MACEs) were analyzed. RESULTS: Among 314 patients, 110 experienced MACE during a median follow-up of 13 months. The risk of MACE was significantly increased in the high entropy group (log-rank p < 0.001). Entropy maintained an independent association with MACE in a multivariable model including left ventricular ejection fraction (LVEF) and LGE (HR = 1.78; p = 0.001). In addition, the primary endpoint events prognostic value was significantly improved by adding LV entropy to the baseline multivariable model (C-statistic improvement: 0.785-0.818, Delong test: p = 0.001). Similarly, among 193 3.0-T field patients, adding LV entropy to the multivariable baseline model significantly improved the prognostic value of the model for MACE (C-statistic improvement: 0.820-0.898, Delong test: p = 0.004). CONCLUSION: CMR-assessed LV entropy is a powerful independent predictor of MACE in patients with CAD, incremental to common clinical and CMR risk factors, including LVEF, LGE, Native T1, and ECV. CLINICAL RELEVANCE STATEMENT: Left ventricular entropy is a powerful independent predictor of major adverse cardiac events in patients with coronary atherosclerotic heart disease, incremental to common clinical and cardiac magnetic resonance risk factors. KEY POINTS: • Left ventricular entropy, a novel cardiac magnetic resonance parameter of myocardial heterogeneity, demonstrated a robust prognostic association with major adverse cardiac events beyond guideline-based, clinical risk markers. • Entropy can have an important role in the primary prevention of major adverse cardiac events in patients with coronary atherosclerotic heart disease. • Compared with late gadolinium enhancement, extracellular volume, and native T1, entropy could be used to more comprehensively characterize the heterogeneity of left ventricular myocardium.

19.
Microbiol Spectr ; 11(4): e0151023, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37534988

ABSTRACT

The oomycete Pythium oligandrum is a potential biocontrol agent to control a wide range of fungal and oomycete-caused diseases, such as Pythium myriotylum-caused rhizome rot in ginger, leading to reduced yields and compromised quality. Previously, P. oligandrum has been studied for its plant growth-promoting potential by auxin production and induction of disease resistance by elicitors such as oligandrin. Volatile organic compounds (VOCs) play beneficial roles in sustainable agriculture by enhancing plant growth and resistance. We investigated the contribution of P. oligandrum-produced VOCs on plant growth and disease suppression by initially using Nicotiana benthamiana plants for screening. P. oligandrum VOCs significantly enhanced tobacco seedling and plant biomass contents. Screening of the individual VOCs showed that 3-octanone and hexadecane promoted the growth of tobacco seedlings. The total VOCs from P. oligandrum also enhanced the shoot and root growth of ginger plants. Transcriptomic analysis showed a higher expression of genes related to plant growth hormones and stress responses in the leaves of ginger plants exposed to P. oligandrum VOCs. The concentrations of plant growth hormones such as auxin, zeatin, and gibberellic acid were higher in the leaves of ginger plants exposed to P. oligandrum VOCs. In a ginger disease biocontrol assay, the VOC-exposed ginger plants infected with P. myriotylum had lower levels of disease severity. We conclude that this study contributes to understanding the growth-promoting mechanisms of P. oligandrum on ginger and tobacco, priming of ginger plants against various stresses, and the mechanisms of action of P. oligandrum as a biocontrol agent. IMPORTANCE Plant growth promotion plays a vital role in enhancing production of agricultural crops, and Pythium oligandrum is known for its plant growth-promoting potential through production of auxins and induction of resistance by elicitors. This study highlights the significance of P. oligandrum-produced VOCs in plant growth promotion and disease resistance. Transcriptomic analyses of leaves of ginger plants exposed to P. oligandrum VOCs revealed the upregulation of genes involved in plant growth hormone signaling and stress responses. Moreover, the concentration of growth hormones significantly increased in P. oligandrum VOC-exposed ginger plants. Additionally, the disease severity was reduced in P. myriotylum-infected ginger plants exposed to P. oligandrum VOCs. In ginger, P. myriotylum-caused rhizome rot disease results in severe losses, and biocontrol has a role as part of an integrated pest management strategy for rhizome rot disease. Overall, growth enhancement and disease reduction in plants exposed to P. oligandrum-produced VOCs contribute to its role as a biocontrol agent.


Subject(s)
Pythium , Volatile Organic Compounds , Zingiber officinale , Pythium/genetics , Volatile Organic Compounds/pharmacology , Zingiber officinale/microbiology , Disease Resistance , Nicotiana , Plant Diseases/prevention & control , Plant Diseases/microbiology
20.
Mol Ther ; 31(9): 2734-2754, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37415332

ABSTRACT

Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Animals , Mice , Cisplatin/adverse effects , Necroptosis , Acute Kidney Injury/metabolism , Kidney/metabolism , Inflammation/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...