Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.861
Filter
1.
Nat Commun ; 15(1): 4620, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816392

ABSTRACT

Influenza viruses and thogotoviruses account for most recognized orthomyxoviruses. Thogotoviruses, exemplified by Thogoto virus (THOV), are capable of infecting humans using ticks as vectors. THOV transcribes mRNA without the extraneous 5' end sequences derived from cap-snatching in influenza virus mRNA. Here, we report cryo-EM structures to characterize THOV polymerase RNA synthesis initiation and elongation. The structures demonstrate that THOV RNA transcription and replication are able to start with short dinucleotide primers and that the polymerase cap-snatching machinery is likely non-functional. Triggered by RNA synthesis, asymmetric THOV polymerase dimers can form without the involvement of host factors. We confirm that, distinctive from influenza viruses, THOV-polymerase RNA synthesis is weakly dependent of the host factors ANP32A/B/E in human cells. This study demonstrates varied mechanisms in RNA synthesis and host factor utilization among orthomyxoviruses, providing insights into the mechanisms behind thogotoviruses' broad-infectivity range.


Subject(s)
Cryoelectron Microscopy , RNA, Viral , Thogotovirus , Transcription, Genetic , Virus Replication , Humans , Thogotovirus/genetics , Thogotovirus/metabolism , Thogotovirus/ultrastructure , RNA, Viral/metabolism , RNA, Viral/genetics , Virus Replication/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/ultrastructure
2.
Food Chem ; 452: 139562, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749140

ABSTRACT

The growing global interest in physical and environmental health has led to the development of plant-based products. Although soy protein and wheat gluten are commonly utilized, concerns regarding gluten-related health issues have driven exploration into alternative proteins. Zein has emerged as a promising option. This research investigated the impact of extraction methods on zein characteristics and the structures of SPI-zein composite gels. Different extraction methods yielded zein with protein contents ranging from 48.12 % to 64.34 %. Ethanol-extracted Z1 and Z3, obtained at different pH conditions, exhibited zeta potential of -3.25 and 5.43 mV, respectively. They displayed similar characteristics to commercial zein and interacted comparably in composite gels. Conversely, alkaline-extracted Z2 had a zeta potential of -2.37 mV and formed distinct gels when combined with SPI. These results indicated that extraction methods influence zein behaviour in composite gels, offering possibilities for tailored formulations and expanding zein's applications, particularly in gluten-free plant-based products.


Subject(s)
Gels , Zein , Zein/chemistry , Gels/chemistry , Glutens/chemistry , Glutens/isolation & purification , Triticum/chemistry , Soybean Proteins/chemistry , Soybean Proteins/isolation & purification
3.
J Hepatocell Carcinoma ; 11: 787-800, 2024.
Article in English | MEDLINE | ID: mdl-38737384

ABSTRACT

Background: Anti-programmed death-1 (PD1) antibodies have changed the treatment landscape for hepatocellular carcinoma (HCC) and exhibit promising treatment efficacy. However, the majority of HCCs still do not respond to anti-PD-1 therapy. Methods: We analyzed the expression of CXCL9 in blood samples from patients who received anti-PD-1 therapy and evaluated its correlation with clinicopathological characteristics and treatment outcomes. Based on the results of Cox regression analysis, a nomogram was established for predicting HCC response to anti-PD-1 therapy. qRT‒PCR and multiple immunofluorescence assays were utilized to analyze the proportions of N1-type neutrophils in vitro and in tumor samples, respectively. Results: The nomogram showed good predictive efficacy in the training and validation cohorts and may be useful for guiding clinical treatment of HCC patients. We also found that HCC cell-derived CXCL9 promoted N1 polarization of neutrophils in vitro and that AMG487, a specific CXCR3 inhibitor, significantly blocked this process. Moreover, multiple immunofluorescence (mIF) showed that patients with higher serum CXCL9 levels had greater infiltration of the N1 phenotype of tumor-associated neutrophils (TANs). Conclusion: Our study highlights the critical role of CXCL9 as an effective biomarker of immunotherapy efficacy and in promoting the polarization of N1-type neutrophils; thus, targeting the CXCL9-CXCR3 axis could represent a novel pharmaceutical strategy to enhance immunotherapy for HCC.

4.
Zool Res ; 45(3): 691-703, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766750

ABSTRACT

General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells. Oligodendrocytes perform essential roles in the central nervous system, including myelin sheath formation, axonal metabolism, and neuroplasticity regulation. They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation, differentiation, and apoptosis. Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes. These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways, but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function. In this review, we summarize the effects of general anesthetic agents on oligodendrocytes. We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.


Subject(s)
Anesthetics, General , Brain , Oligodendroglia , Oligodendroglia/drug effects , Animals , Brain/drug effects , Anesthetics, General/adverse effects , Anesthetics, General/toxicity , Neurotoxicity Syndromes/etiology , Humans
5.
Small ; : e2401954, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733233

ABSTRACT

Achiral solvents are commonly utilized to induce the self-assembly of chiral molecules. This study demonstrates that achiral solvents can trigger helicity inversion in the assemblies of dansyl amphiphiles and control the excited-state "majority rule" in assemblies composed of pure enantiomers, through variation of the cosolvent ratio. Specifically, enantiomers of dansyl amphiphiles self-assemble into helical structures with opposite handedness in methanol (MeOH) and acetonitrile (MeCN), together with inversed circular dichroism and circularly polarized luminescence (CPL) signals. When a mixture of MeOH and MeCN is employed, the achiral cosolvents collectively affect the CPL of the assemblies in a way similar to that of "mixed enantiomers". The dominant cosolvent governs the CPL signal. As the cosolvent composition shifts from pure MeCN to MeOH, the CPL signals undergo a significant inversion and amplification, with two maxima observed at ≈20% MeOH and 20% MeCN. This study deepens the comprehension of how achiral solvents modulate helical nanostructures and their excited-state chiroptical properties.

6.
Environ Int ; 187: 108732, 2024 May.
Article in English | MEDLINE | ID: mdl-38728817

ABSTRACT

The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.


Subject(s)
Manure , Rhizosphere , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Swine , Tetracycline Resistance/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Bacteria/genetics , Gene Transfer, Horizontal , Anti-Bacterial Agents/pharmacology
7.
iScience ; 27(5): 109712, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38689643

ABSTRACT

There are concerns that artificial intelligence (AI) algorithms may create underdiagnosis bias by mislabeling patient individuals with certain attributes (e.g., female and young) as healthy. Addressing this bias is crucial given the urgent need for AI diagnostics facing rapidly spreading infectious diseases like COVID-19. We find the prevalent AI diagnostic models show an underdiagnosis rate among specific patient populations, and the underdiagnosis rate is higher in some intersectional specific patient populations (for example, females aged 20-40 years). Additionally, we find training AI models on heterogeneous datasets (positive and negative samples from different datasets) may lead to poor model generalization. The model's classification performance varies significantly across test sets, with the accuracy of the better performance being over 40% higher than that of the poor performance. In conclusion, we developed an AI bias analysis pipeline to help researchers recognize and address biases that impact medical equality and ethics.

8.
Anal Chem ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805056

ABSTRACT

Over the years, a number of state-of-the-art data analysis tools have been developed to provide a comprehensive analysis of data collected from gas chromatography-mass spectrometry (GC-MS). Unfortunately, the time shift problem remains unsolved in these tools. Here, we developed a novel comprehensive data analysis strategy for GC-MS-based untargeted metabolomics (AntDAS-GCMS) to perform total ion chromatogram peak detection, peak resolution, time shift correction, component registration, statistical analysis, and compound identification. Time shift correction was specifically optimized in this work. The information on mass spectra and elution profiles of compounds was used to search for inherent landmarks within analyzed samples to resolve the time shift problem across samples efficiently and accurately. The performance of our AntDAS-GCMS was comprehensively investigated by using four complex GC-MS data sets with various types of time shift problems. Meanwhile, AntDAS-GCMS was compared with advanced GC-MS data analysis tools and classic time shift correction methods. Results indicated that AntDAS-GCMS could achieve the best performance compared to the other methods.

9.
Gene ; 920: 148531, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38705424

ABSTRACT

DNA methyltransferases (DNMTs) are important epigenetic modification during spermatogenesis. To further evaluate the pattern of DNMTs in horse testes during development, we investigated the expression and localization of DNMT1, DNMT3a and DNMT3b at different time points. The qRT-PCR results showed that DNMT1 expression was maintained in testes tissue from 6-month-old (0.5y) to 2-year-old (2y) of age and decreased after 3-year-old (3y) (P < 0.01). The expression levels of DNMT3a and DNMT3b peaked in testes tissue at 3y (P < 0.01). At 4-year-old (4y), the expression of DNMT3a and DNMT3b was decreased and became similar to that at 0.5y. Immunofluorescence of DNMT1, DNMT3a and DNMT3b on testis samples confirmed the differential expression and localization of these three DNA methylation transferases during horse development. Further molecular biological studies are needed to understand the implications of the expression patterns of these DNMTs in horse testes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3B , Gene Expression Regulation, Developmental , Testis , Animals , Male , Horses/genetics , Testis/metabolism , Testis/growth & development , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , DNA Methylation , Spermatogenesis/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism
10.
Dalton Trans ; 53(21): 9198-9206, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743042

ABSTRACT

The polymerization mechanism of 2-vinylpyridine catalyzed by cationic yttrium complexes with diverse ancillary ligands, specifically [L1Y(CH2SiMe3)(THF)]+ [L1 = (2,6-Et2C6H3)NC(Me)CHC(Me)N(2,6-Et2C6H3)] (Y-1), [L2Y(CH2SiMe3)(THF)]+ [L2 = (2,6-Cl2C6H3)NC(Me)CHC(Me)N(2,6-Cl2C6H3)] (Y-2), and [L3Y(CH2SiMe3)(THF)]+ [L3 = (2,6-C6H5)NC(Me)CHC(Me)N(2,6-iPr2C6H3)] (Y-3), was studied using density functional theory (DFT) calculations. Having achieved an agreement between theory and experiment, it is found that isotactic selectivity induced by Y-1 or Y-2 results from a combination of smaller deformation of the catalyst and stronger electronic effects. Conversely, the Y-3 complex exhibits comparable energy barriers for proceeding via either isotactic or syndiotactic pathways, aligning with the production of atactic polymers as seen experimentally. To examine the steric effects on the kinetic and thermodynamic properties, a computational model of an analogue complex [L4Y(CH2SiMe3)(THF)]+ [L4 = (2,6-Cl2C6H3)NC(Me)CHC(Me)N(iPr2C6H3)] (Y-4), featuring increased steric hindrance, was analyzed. Distortion-interaction and topographic steric map analyses further affirmed that steric hindrance significantly influences stereoselectivity. A direct relationship was identified between the energy barriers of isotactic insertion transition states and the bulkiness of ancillary ligands; greater distortion energy of the catalyst correlates with higher barriers for isotactic polymerization. These findings enhance the mechanistic comprehension of 2-vinylpyridine polymerization and are expected to contribute valuable insights for the improvement of catalytic polymerization systems of 2-vinylpyridine.

11.
Biomolecules ; 14(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38785923

ABSTRACT

Viruses are obligate intracellular parasites that rely on cell surface receptor molecules to complete the first step of invading host cells. The experimental method for virus receptor screening is time-consuming, and receptor molecules have been identified for less than half of known viruses. This study collected known human viruses and their receptor molecules. Through bioinformatics analysis, common characteristics of virus receptor molecules (including sequence, expression, mutation, etc.) were obtained to study why these membrane proteins are more likely to become virus receptors. An in-depth analysis of the cataloged virus receptors revealed several noteworthy findings. Compared to other membrane proteins, human virus receptors generally exhibited higher expression levels and lower sequence conservation. These receptors were found in multiple tissues, with certain tissues and cell types displaying significantly higher expression levels. While most receptor molecules showed noticeable age-related variations in expression across different tissues, only a limited number of them exhibited gender-related differences in specific tissues. Interestingly, in contrast to normal tissues, virus receptors showed significant dysregulation in various types of tumors, particularly those associated with dsRNA and retrovirus receptors. Finally, GateView, a multi-omics platform, was established to analyze the gene features of virus receptors in human normal tissues and tumors. Serving as a valuable resource, it enables the exploration of common patterns among virus receptors and the investigation of virus tropism across different tissues, population preferences, virus pathogenicity, and oncolytic virus mechanisms.


Subject(s)
Neoplasms , Receptors, Virus , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Computational Biology/methods , Multiomics
12.
BMC Med Inform Decis Mak ; 24(1): 128, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773456

ABSTRACT

BACKGROUND: Accurate segmentation of critical anatomical structures in fetal four-chamber view images is essential for the early detection of congenital heart defects. Current prenatal screening methods rely on manual measurements, which are time-consuming and prone to inter-observer variability. This study develops an AI-based model using the state-of-the-art nnU-NetV2 architecture for automatic segmentation and measurement of key anatomical structures in fetal four-chamber view images. METHODS: A dataset, consisting of 1,083 high-quality fetal four-chamber view images, was annotated with 15 critical anatomical labels and divided into training/validation (867 images) and test (216 images) sets. An AI-based model using the nnU-NetV2 architecture was trained on the annotated images and evaluated using the mean Dice coefficient (mDice) and mean intersection over union (mIoU) metrics. The model's performance in automatically computing the cardiac axis (CAx) and cardiothoracic ratio (CTR) was compared with measurements from sonographers with varying levels of experience. RESULTS: The AI-based model achieved a mDice coefficient of 87.11% and an mIoU of 77.68% for the segmentation of critical anatomical structures. The model's automated CAx and CTR measurements showed strong agreement with those of experienced sonographers, with respective intraclass correlation coefficients (ICCs) of 0.83 and 0.81. Bland-Altman analysis further confirmed the high agreement between the model and experienced sonographers. CONCLUSION: We developed an AI-based model using the nnU-NetV2 architecture for accurate segmentation and automated measurement of critical anatomical structures in fetal four-chamber view images. Our model demonstrated high segmentation accuracy and strong agreement with experienced sonographers in computing clinically relevant parameters. This approach has the potential to improve the efficiency and reliability of prenatal cardiac screening, ultimately contributing to the early detection of congenital heart defects.


Subject(s)
Heart Defects, Congenital , Ultrasonography, Prenatal , Humans , Heart Defects, Congenital/diagnostic imaging , Ultrasonography, Prenatal/methods , Female , Pregnancy , Fetal Heart/diagnostic imaging , Fetal Heart/anatomy & histology
13.
BMC Nurs ; 23(1): 366, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822276

ABSTRACT

BACKGROUND: The adoption of digitization has emerged as a new trend in the advancement of healthcare systems. To ensure high-quality care, nurses should possess sufficient skills to assist in the digital transformation of healthcare practices. Suitable tools have seldom been developed to assess nurses' skills in digital applications. This study aimed to develop the Nursing Digital Application Skill Scale (NDASS) and test its psychometric properties. METHODS: The Nursing Digital Application Skill Scale was developed in three phases. In Phase 1, an item pool was developed based on previous literature and the actual situation of nursing work. Phase 2 included 14 experts' assessment of content validity and a focus group interview with 30 nurses to pretest the scale. In phase 3, 429 registered nurses were selected from March to June 2023, and item analysis, exploratory factor analysis, and confirmatory factor analysis were used to refine the number of items and explore the factor structure of the scale. Additionally, reliability was determined by internal consistency and test-retest reliability. RESULTS: The final version of the NDASS consisted of 12 items. The content validity index of NDASS reached 0.975 at an acceptable level. The convergent validity test showed that the average variance extracted value was 0.694 (> 0.5) and the composite reliability value was 0.964 (> 0.7), both of which met the requirements. The principal component analysis resulted in a single-factor structure explaining 74.794% of the total variance. All the fitting indices satisfied the standard based upon confirmatory factor analyses, indicating that the single-factor structure contributed to an ideal model fit. The internal consistency appeared high for the NDASS, reaching a Cronbach's alpha value of 0.968. The test-retest reliability was 0.740, and the split-half coefficient was 0.935. CONCLUSION: The final version of the NDASS, which possesses adequate psychometric properties, is a reliable and effective instrument for nurses to self-assess digital skills in nursing work and for nursing managers in designing nursing digital skill training.

14.
Infection ; 52(3): 787-800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717734

ABSTRACT

PURPOSE: The principal objective of this project was to review and thoroughly examine the chemical characteristics, pharmacological activity, and quantification methods associated with contezolid. METHODS: The article was based on published and ongoing preclinical and clinical studies on the application of contezolid. These studies included experiments on the physicochemical properties of contezolid, in vitro antimicrobial research, in vivo antimicrobial research, and clinical trials in various phases. There were no date restrictions on these studies. RESULTS: In June 2021, contezolid was approved for treating complicated skin and soft tissue infections. The structural modification of contezolid has resulted in better efficacy compared to linezolid. It inhibits bacterial growth by preventing the production of the functional 70S initiation complex required to translate bacterial proteins. The current evidence has indicated a substantial decline in myelosuppression and monoamine oxidase inhibition without impairing its antibacterial properties. Contezolid was found to have a more significant safety profile and to be metabolised by flavin monooxygenase 5, reducing the risk of harmful effects due to drug-drug interactions. Adjusting doses is unnecessary for patients with mild to moderate renal or hepatic insufficiency. CONCLUSION: As an oral oxazolidinone antimicrobial agent, contezolid is effective against multi-drug resistant Gram-positive bacteria. The introduction of contezolid provided a new clinical option.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacterial Infections , Oxazolidinones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Humans , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Soft Tissue Infections/drug therapy , Soft Tissue Infections/microbiology , Animals , Pyridones
15.
Reproduction ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38718815

ABSTRACT

BACKGROUND: Adult mammalian ovaries contain stem/progenitor cells necessary for folliculogenesis and ovulation-related tissue rupture repair. Theca cells are recruited and developed from progenitors during the folliculogenesis. Theca cell progenitors were not well-defined. The aim of current study is to compare the potential of four ovarian progenitors with defined markers (LY6A, EPCR, LGR5and PDGFRA) to form steroidogenic theca cells in vitro. METHODS: Ovarian progenitors were identified by the above four makers reported previously. The location of the cells was determined by immunohistochemistry and immunofluorescence staining of ovarian sections of adult mice. Different progenitor populations were purified by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) techniques from ovarian cell preparation and were tested for their abilities to generate steroidogenic theca cells in vitro. The cells were differentiated with a medium containing LH, ITS and DHH agonist for 12 days. RESULTS: EPCR+ and LGR5+ cells primarily distributed along ovarian surface epitheliums (OSE), while LY6A+ cells distributed in both OSE and parenchyma. However, PDGFRA+ cells were exclusively located in interstitial compartment. When the progenitors were purified by these markers and differentiated in vitro, LY6A+ and PDGFRA+ cells formed steroidogenic cells expressing both CYP11A1 and CYP17A1 and primarily producing androgens, showing characteristics of theca-like cells, while LGR5+ cells generated steroidogenic cells devoid of CYP17A1 expression and androgen production, showing a characteristic of progesterone-producing cells (granulosa- or lutea-like cells). CONCLUSION: Progenitors from both OSE and parenchyma of adult mice are capable of generating steroidogenic cells with different steroidogenic capacities, showing a possible lineage preference.

16.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732945

ABSTRACT

Sub-Nyquist synthetic aperture radar (SAR) based on pseudo-random time-space modulation has been proposed to increase the swath width while preserving the azimuthal resolution. Due to the sub-Nyquist sampling, the scene can be recovered by an optimization-based algorithm. However, these methods suffer from some issues, e.g., manually tuning difficulty and the pre-definition of optimization parameters, and a low signal-noise ratio (SNR) resistance. To address these issues, a reweighted optimization algorithm, named pseudo-ℒ0-norm optimization algorithm, is proposed for the sub-Nyquist SAR system in this paper. A modified regularization model is first built by applying the scene prior information to nearly acquire the number of nonzero elements based on Bayesian estimation, and then this model is solved by the Cauchy-Newton method. Additionally, an error correction method combined with our proposed pseudo-ℒ0-norm optimization algorithm is also present to eliminate defocusing in the motion-induced model. Finally, experiments with simulated signals and strip-map TerraSAR-X images are carried out to demonstrate the effectiveness and superiority of our proposed algorithm.

17.
Environ Res ; 252(Pt 4): 119055, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710429

ABSTRACT

Application of biochar and inoculation with specific microbial strains offer promising approaches for addressing atrazine contamination in agricultural soils. However, determining the optimal method necessitates a comprehensive understanding of their effects under similar conditions. This study aimed to evaluate the effectiveness of biochar and Paenarthrobacter sp. AT5, a bacterial strain known for its ability to degrade atrazine, in reducing atrazine-related risks to soybean crops and influencing bacterial communities. Both biochar and strain AT5 significantly improved atrazine degradation in both planted and unplanted soils, with the most substantial reduction observed in soils treated with strain AT5. Furthermore, bioaugmentation with strain AT5 outperformed biochar in enhancing soybean growth, photosynthetic pigments, and antioxidant defenses. While biochar promoted higher soil bacterial diversity compared to strain AT5, the latter selectively enriched specific bacterial populations. Additionally, soil inoculated with strain AT5 displayed a notable increase in the abundance of key genes associated with atrazine degradation (trzN, atzB, and atzC), surpassing the effects observed with biochar addition, thus highlighting its effectiveness in mitigating atrazine risks in soil.

18.
J Mol Med (Berl) ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695882

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by inflammatory conditions in the gastrointestinal tract. According to reports, IBD prevalence is increasing globally, with heavy economic and physical burdens. Current IBD clinical treatment is limited to pharmacological methods; therefore, new strategies are needed. Myeloid-derived growth factor (MYDGF) secreted by bone marrow-derived mononuclear macrophages has beneficial effects in multiple inflammatory diseases. To this end, the present study aimed to establish an experimental IBD mouse model using dextran sulfate sodium in drinking water. MYDGF significantly alleviated DSS-induced colitis, suppressed lymphocyte infiltration, restored epithelial integrity in mice, and decreased apoptosis in the colon tissue. Moreover, the number of M1 macrophages was decreased and that of M2 macrophages was increased by the action of MYDGF. In MYDGF-treated mice, the NF-κB and MAPK pathways were partially inhibited. Our findings indicate that MYDGF could mitigate DSS-induced mice IBD by reducing inflammation and restoring epithelial integrity through regulation of intestinal macrophage polarization via NF-κB and MAPK pathway inhibition. KEY MESSAGES: MYDGF alleviated DSS-induced acute colitis. MYDGF maintains colon epithelial barrier integrity and relieves inflammation. MYDGF regulates colon macrophage polarization. MYDGF partially inhibited the activation of NF-κB and MAPK pathway.

19.
J Chromatogr A ; 1727: 464948, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38759460

ABSTRACT

Immobilization of functional protein, especially G protein-coupled receptors (GPCRs), is particularly significant in various fields such as the development of assays for diagnosis, lead compound screening, as well as drug-protein interaction analysis. However, there are still some challenges with the immobilized proteins such as undefined loads, orientations, and the loss of activity. Herein, we introduced a DNA conjugation strategy into the immobilization of Cysteinyl leukotriene receptor 1(CysLTR1) which enables exquisite molecular control and higher activity of the receptor. We used the bacterial relaxases VirD2 as an immobilized tag fused at the C terminus of CysLTR1. Tyrosine residue(Y29) at the core binding site of the VirD2 tag can react with the single-strand piece of DNA(T-DNA) in the form of a covalent bond. Inspired by this strategy, we developed a new immobilization method by mixing the T-DNA-modified silica gel with the cell lysate containing the expressed VirD2-tagged CysLTR1 for 1 hour. We found that the successful formation of DNA-protein conjugate enables the immobilization of CysLTR1 fast, site-specific, and with minimal loss of activity. The feasibility of the immobilized CysLTR1 was evaluated in drug-protein binding interaction by frontal analysis and adsorption energy distribution analysis. The binding of pranlukast, zafirlukast, and MK571 to the immobilized CysLTR1 was realized, and the association constants presented good agreement between the two methods. Rosmarinic acid was retained in the immobilized CysLTR1 column, and the in-vitro test revealed that the compound binds to the receptor in one type of binding site mode. Despite these results, we concluded that the DNA-protein conjugate strategy will probably open up the possibilities for capturing other functional proteins in covalent and site-specific modes from the complex matrices and the immobilized receptor preserves the potential in fishing out lead compounds from natural products.


Subject(s)
Immobilized Proteins , Receptors, Leukotriene , Receptors, Leukotriene/metabolism , Receptors, Leukotriene/chemistry , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Humans , DNA/chemistry , DNA/metabolism , Binding Sites , Protein Binding
20.
Talanta ; 275: 126186, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703482

ABSTRACT

Detection of procalcitonin (PCT) is crucial for the early identification of sepsis. PCT is primarily utilized in the multiple diagnosis of bacterial and viral illnesses along with to guide the application of antibiotics. Considering their advantages of high specificity and straightforward usage, electrochemical immunosensors offer significant application prospects in the detection of disease indicators. A dual-mode electrochemical immunosensor was constructed in this study to reliably identify PCT. In light of the synergistic effect of the dual-MOF derived heterostructure, the immunosensor demonstrating excellent square wave voltammetry (SWV) signals as well as significant catalytic activity for the H2O2 redox process. In addition to maintaining a low detection limit (SWV: 0.31 fg/mL and i-t: 0.098 fg/mL), the immunosensor offers an extensive linear response range (0.000001-100 ng/mL). The excellent performance is on account of the introduction of the local on-site sulfurized dual-MOF heterostructure with abundant metal chalcogenides/MOF interfaces, which boosts the specific surface area, offers an abundance of active sites, enhances conductivity, and raises catalytic activity. Furthermore, the immunosensor exhibits outstanding specificity, stability and reproducibility for the determination of PCT in serum, which is of great crucial for the clinical screening and diagnosis of sepsis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Procalcitonin , Procalcitonin/blood , Metal-Organic Frameworks/chemistry , Humans , Immunoassay/methods , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...