Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 22: 101507, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38855098

ABSTRACT

The utilization of antibiotics is prevalent among lactating mothers. Hence, the rapid determination of trace amounts of antibiotics in human milk is crucial for ensuring the healthy development of infants. In this study, we constructed a human milk system containing residual doxycycline (DXC) and/or tetracycline (TC). Machine learning models and clustering algorithms were applied to classify and predict deficient concentrations of single and mixed antibiotics via label-free SERS spectra. The experimental results demonstrate that the CNN model has a recognition accuracy of 98.85% across optimal hyperparameter combinations. Furthermore, we employed Independent Component Analysis (ICA) and the pseudo-Siamese Convolutional Neural Network (pSCNN) to quantify the ratios of individual antibiotics in mixed human milk samples. Integrating the SERS technique with machine learning algorithms shows significant potential for rapid discrimination and precise quantification of single and mixed antibiotics at deficient concentrations in human milk.

2.
J Cell Mol Med ; 28(8): e18292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652116

ABSTRACT

Foodborne illnesses, particularly those caused by Salmonella enterica with its extensive array of over 2600 serovars, present a significant public health challenge. Therefore, prompt and precise identification of S. enterica serovars is essential for clinical relevance, which facilitates the understanding of S. enterica transmission routes and the determination of outbreak sources. Classical serotyping methods via molecular subtyping and genomic markers currently suffer from various limitations, such as labour intensiveness, time consumption, etc. Therefore, there is a pressing need to develop new diagnostic techniques. Surface-enhanced Raman spectroscopy (SERS) is a non-invasive diagnostic technique that can generate Raman spectra, based on which rapid and accurate discrimination of bacterial pathogens could be achieved. To generate SERS spectra, a Raman spectrometer is needed to detect and collect signals, which are divided into two types: the expensive benchtop spectrometer and the inexpensive handheld spectrometer. In this study, we compared the performance of two Raman spectrometers to discriminate four closely associated S. enterica serovars, that is, S. enterica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine learning algorithms were applied to analyse these SERS spectra. The support vector machine (SVM) model showed the highest accuracy for both handheld (99.97%) and benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld Raman spectrometers achieved similar prediction accuracy as benchtop spectrometers when combined with machine learning models, providing an effective solution for rapid, accurate and cost-effective identification of closely associated S. enterica serovars.


Subject(s)
Salmonella enterica , Serogroup , Spectrum Analysis, Raman , Support Vector Machine , Spectrum Analysis, Raman/methods , Salmonella enterica/isolation & purification , Humans , Algorithms
3.
J Adv Res ; 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38531495

ABSTRACT

INTRODUCTION: Abusing antibiotic residues in the natural environment has become a severe public health and ecological environmental problem. The side effects of its biochemical and physiological consequences are severe. To avoid antibiotic contamination in water, implementing universal and rapid antibiotic residue detection technology is critical to maintaining antibiotic safety in aquatic environments. Surface-enhanced Raman spectroscopy (SERS) provides a powerful tool for identifying small molecular components with high sensitivity and selectivity. However, it remains a challenge to identify pure antibiotics from SERS spectra due to coexisting components in the mixture. OBJECTIVES: In this study, an intelligent analysis model for the SERS spectrum based on a deep learning algorithm was proposed for rapid identification of the antibiotic components in the mixture and quantitative determination of the ratios of these components. METHODS: We established a water environment system containing three antibiotic residues of ciprofloxacin, doxycycline, and levofloxacin. To facilitate qualitative and quantitative analysis of the SERS spectra antibiotic mixture datasets, we developed a computational framework integrating a convolutional neural network (CNN) and a non-negative elastic network (NN-EN) method. RESULTS: The experimental results demonstrate that the CNN model has a recognition accuracy of 98.68%, and the interpretation analysis of Shapley Additive exPlanations (SHAP) shows that our model can specifically focus on the characteristic peak distribution. In contrast, the NN-EN model can accurately quantify each component's ratio in the mixture. CONCLUSION: Integrating the SERS technique assisted by the CNN combined with the NN-EN model exhibits great potential for rapid identification and high-precision quantification of antibiotic residues in aquatic environments.

4.
World J Microbiol Biotechnol ; 40(5): 146, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538920

ABSTRACT

Bacterial species within the Acinetobacter baumannii-calcoaceticus (Acb) complex are very similar and are difficult to discriminate. Misidentification of these species in human infection may lead to severe consequences in clinical settings. Therefore, it is important to accurately discriminate these pathogens within the Acb complex. Raman spectroscopy is a simple method that has been widely studied for bacterial identification with high similarities. In this study, we combined surfaced-enhanced Raman spectroscopy (SERS) with a set of machine learning algorithms for identifying species within the Acb complex. According to the results, the support vector machine (SVM) model achieved the best prediction accuracy at 98.33% with a fivefold cross-validation rate of 96.73%. Taken together, this study confirms that the SERS-SVM method provides a convenient way to discriminate between A. baumannii, Acinetobacter pittii, and Acinetobacter nosocomialis in the Acb complex, which shows an application potential for species identification of Acinetobacter baumannii-calcoaceticus complex in clinical settings in near future.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter , Humans , Spectrum Analysis, Raman , Acinetobacter Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...