Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 926: 171827, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513860

ABSTRACT

The incorporation of green manure into cropping systems is a potential strategy for sequestering soil carbon (C), especially in saline-alkali soil. Yet, there are still unknown about the substitution impacts of green manure on nitrogen (N) fertilizer in wheat-green manure multiple cropping system. Herein, a five-year field experiment was performed to determine the impact of three levels of N fertilizer inputs [i.e., N fertilizer reduced by 0 % (100N), 10 % (90 N), and 20 % (80 N)] with aboveground biomass of green manure removal (0GM) and return (100GM) on soil organic carbon (SOC) storage and its primary determinants. The results demonstrated that no significant interaction on SOC storage was detected between green manure and N fertilizer management. 80 N enhanced SOC storage in bulk soil by 7.4 and 13.2 % in 0-20 cm soil depth relative to 100 N and 90 N (p < 0.05). Regardless of N fertilizer levels, compared with 100GM, 0GM increased SOC storage in bulk soil by 14.2-34.6 % in 0-40 cm soil depth (p < 0.05). This was explained by an increase in soil macro-aggregates (>2 and 0.25-2 mm) proportion contributing to SOC physical protection. Meanwhile, the improvement of SOC storage under 0GM was due to the decrease of soil C- and N-acquisition enzyme activities, and microbial resource limitation. Alternatively, the variation partitioning analyses (VPA) results further suggested that C- and N-acquisition enzyme activities, as well as microbial resource limitation were the most important factors for SOC storage. The findings highlighted those biological factors played a dominant role in SOC accumulation compared to physical factors. The aboveground biomass of green manure removal with N fertilizer reduced by 20 % is a viable option to enhance SOC storage in a wheat-green manure multiple cropping system.

2.
Arch Microbiol ; 204(2): 142, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35043270

ABSTRACT

The continuous wheat-maize planting has led to the increase in epidemic frequency of wheat diseases under climate change. Analyzation of the soil microbial composition in different rotation crops is essential to select alternative rotation regime. This study investigated the bacterial and fungal community abundance and composition, and potential microbe-microbe interactions in three rotations, including wheat-maize → spring maize (WMFS), wheat-soybean (WS) and continuous wheat-maize (WM) planting. The results revealed that there were 110, 156, and 195 bacterial, and 17, 8, and 15 fungal operational taxonomic units respectively enriched by WMFS, WS, and WM. WM increased the relative abundance of Actinobacteria and α-Proteobacteria in wheat, and the relative abundance and copy number of genus Fusarium in maize. WMFS and WS could decrease the abundance of Fusarium in summer-crop across the growth stages and in wheat at elongation. WS also increased the copy number of ammonia-oxidizing bacteria in wheat at flowering and harvest. Network analysis revealed that WM resulted in simple and isolated wheat network with small modules dominating and none Nitrospirae and ß-Proteobacteria in the main modules. WS formed interconnected and intricate wheat network with the maximum number of large modules and module connectors. Under WS, positive correlation between antagonistic Streptomyces (Actinobacteria) and genus Fusarium was found in wheat. Soil physicochemical properties explained the majority of the variation in bacterial and fungal ß-diversity in wheat (P < 0.01). Rotation regime switching from WM to WMFS and WS may effectively damp the risk of wheat disease and maintain the wheat yield in intensive cereal production.


Subject(s)
Mycobiome , Soil , Agriculture , Bacteria/genetics , Soil Microbiology
3.
Ying Yong Sheng Tai Xue Bao ; 26(1): 186-98, 2015 Jan.
Article in Chinese | MEDLINE | ID: mdl-25985670

ABSTRACT

Heat stress is one of the major agro-meteorological hazards that affect maize production significantly in the farming region of Northeast China (NFR). This study analyzed the temporal and spatial changes of the accumulated temperature above 30 °C (AT) and the accumulated days with the maximum temperature above 30 °C (AD) in different maize growing phases under global warming. It further evaluated the impacts of extreme heat on maize yield in different regions, and put forward some adaptation measures to cope with heat stress for maize production in NFR. The results showed that during 1961 to 2010, the temperature in the maize growing season increased significantly. The maximum temperature in flowering phase was much larger than that in the other growing phases. Temperature increased at rates of 0. 16, 0. 14, 0.06 and 0.23 °C every ten years in the whole maize growing season, vegetative growth phase (from sowing to 11 days before flowering), flowering phase, and late growth phase (from 11 days after flowering to maturity), respectively. The AT in the whole maize growing season increased in NFR during the last 50 years with the highest in the southwest part of NFR, and that in the vegetative growth phase increased faster than in the other two phases. The AD in the whole maize growing season increased during the last 50 years with the highest in the southwest part of NFR, and that in the late growth phase increased faster than in the other two phases. Heat stress negatively affected maize yield during the maize growing season, particularly in the vegetative growth phase. The heat stress in Songliao Plain was much higher in comparison to the other regions. The adaptation measures of maize production to heat stress in NFR included optimizing crop structure, cultivating high temperature resistant maize varieties, improving maize production management and developing the maize production system that could cope with disasters.


Subject(s)
Acclimatization , Hot Temperature , Zea mays/physiology , Agriculture , China , Global Warming
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(1): 231-4, 2014 Jan.
Article in Chinese | MEDLINE | ID: mdl-24783567

ABSTRACT

The absorption and accumulation of ten mineral elements in four kinds of organs (root, steam, leaf and flower disc) in Helianthus annuus L. plants cultured in Hetao Irrigation District under different level of salinity stress were determined by ICP-AES with wet digestion (HNO3 + HClO4). The results showed that: (1) The contents of Fe, Mn, Zn, Ca, and Na were highest in roots, so was K in stems, B and Mg in leaves and P in flower discs, while no significant difference was detected in the content of Cu among these organs; (2) The cumulants of Ca, Mg, P, Cu, B and Zn were highest in flower discs, so were Na, Fe and Mn in roots and K in stems; (3) In sunflower plants, the proportion of mineral element cumulant for K : Ca : Mg : P : Na was 16.71 : 5.23 : 3.86 : 1.23 : 1.00, and for Zn : Fe : B : Mn: Cu was 56.28 : 27.75 : 1.93 : 1.17 : 1.00, respectively; (4) The effect of salinity stress on absorption of mineral elements differed according to the kind of organ and element, root was the most sensitive to soil salt content, followed by stem and leaf, and the effect on flower disc seemed complex.


Subject(s)
Helianthus/chemistry , Minerals/analysis , Flowers , Plant Leaves , Plant Roots , Plant Stems , Salinity , Sodium Chloride , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...