Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(5): 3086-3096, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38588325

ABSTRACT

The timely administration of glucagon is a standard clinical practice for the treatment of severe hypoglycemia. However, the process involves cumbersome steps, including the reconstitution of labile glucagon and filling of the syringe, which cause considerable delays in emergency situations. Moreover, multiple dosages are often required to prevent the recurrence of the hypoglycemic episode because of the short half-life of glucagon in plasma. Herein, we develop a glucagon-loaded long-dissolving microneedle (GLMN) patch that exhibits the properties of fast onset and sustained activity for the effective treatment of severe hypoglycemia. Three types of MN patches were fabricated with different dimensions (long, medium, and short). The longer MN patch packaged a higher dosage of glucagon and exhibited supreme mechanical strength compared to the shorter one. Additionally, the longer MN patch could insert more deeply into the skin, resulting in higher permeability of glucagon across the skin tissue and more rapid systemic absorption as compared with the shorter MN patch. The GLMN patch was observed to reverse the effects of hypoglycemia within 15 min of application in animal models (specifically, rat and rhesus monkey models) and maintained long-term glycemic control, owing to highly efficient drug permeation and the drug reservoir effect of the MN base. The current study presents a promising strategy for the rapid reversal of severe hypoglycemia that exhibits the desirable properties of easy use, high efficiency, and sustained action.


Subject(s)
Glucagon , Hypoglycemia , Macaca mulatta , Needles , Animals , Glucagon/administration & dosage , Glucagon/pharmacokinetics , Hypoglycemia/drug therapy , Hypoglycemia/blood , Rats , Male , Rats, Sprague-Dawley , Transdermal Patch , Administration, Cutaneous , Drug Delivery Systems/instrumentation , Blood Glucose/analysis , Blood Glucose/drug effects
2.
Bioeng Transl Med ; 8(5): e10457, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693072

ABSTRACT

Combinational immunotherapy of dendritic cell (DC) vaccines and anti-programmed cell death protein 1 antibodies (aPD1) has been regarded as a promising strategy for cancer treatment because it not only induces tumor-specific T cell immune responses, but also prevents failure of T cell functions by the immune suppressive milieu of tumors. Microneedles have emerged as an innovative platform for efficient transdermal immunotherapies. However, co-delivery of DC vaccines and aPD1 via microneedles has not been studied since conventional microneedle platforms are unsuitable for fragile therapeutics like living cells and antibodies. This study employs our newly invented cryomicroneedles (cryoMNs) to co-deliver DC vaccines and aPD1 for the combinational immunotherapy. CryoMNs are fabricated by stepwise cryogenic micromoulding of cryogenic medium with pre-suspended DCs and aPD1, which are further integrated with a homemade handle for convenient application. The viability of DCs in cryoMNs remains above 85%. CryoMNs are mechanically strong enough to insert into porcine and mouse skin, successfully releasing DCs and aPD1 inside skin tissue after melting. Co-delivery of ovalbumin (OVA)-pulsed DCs (OVA-DCs) and aPD1 via cryoMNs induced higher antigen-specific cellular immune responses compared with the mono-delivery of OVA-DCs or aPD1. Finally, administration with cryoMNs co-encapsulated with OVA-DCs and aPD1 increases the infiltration of effector T cells in the tumor, resulting in stronger anti-tumor therapeutic efficacy in both prophylactic and therapeutic melanoma models compared with administration with cryoMNs loaded with OVA-DCs or aPD1. This study demonstrates the great potential of cryoMNs as a co-delivery system of therapeutic cells and biomacromolecules for combinational therapies.

3.
Macromol Biosci ; 23(12): e2300253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37552862

ABSTRACT

Dissolvable microneedles (DMNs) are an attractive alternative for vaccine delivery due to their user-friendly, skin-targeted, and minimally invasive features. However, vaccine waste and inaccurate dosage remain significant issues faced by DMNs, as the skin's elasticity makes it difficult to insert MNs completely. Here, a simple and reliable fabrication method are introduced based on two-casting micromolding with centrifugal drying to create a rapidly DMN patch made of hyaluronic acid. Ovalbumin (OVA), as the model antigens, is concentrated in the tip parts of the DMNs (60% of the needle height) to prevent antigen waste caused by skin elasticity. The time and temperature of the initial centrifugal drying significantly affect antigen distribution within the needle tips, with lower temperature facilitating antigen accumulation. The resulting DMN patch is able to penetrate the skin with enough mechanical strength and quickly release antigens into the skin tissue within 3 min. The in vivo study demonstrates that immunization of OVA with DMNs outperforms conventional vaccination routes, including subcutaneous and intramuscular injections, in eliciting both humoral and cellular immunity. This biocompatible DMN patch offers a promising and effective strategy for efficient and safe vaccination.


Subject(s)
Drug Delivery Systems , Vaccines , Administration, Cutaneous , Drug Delivery Systems/methods , Skin , Vaccination/methods , Antigens , Ovalbumin
4.
ACS Appl Mater Interfaces ; 14(35): 39727-39735, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36000701

ABSTRACT

Hydrogels of cross-linked mucin glycoproteins (Muc-gel) have shown strong immune-modulating properties toward macrophages in vitro, which are translated in vivo by the dampening of the foreign body response to implantation in mice. Beyond mucin hydrogels, other biomaterials such as sensors, electrodes, and other long-term implants would also benefit from such immune-modulating properties. In this work, we aimed to transfer the bioactivity observed for three-dimensional Muc-gels to the surface of two model materials by immobilizing mucin into thin films (Muc-film) using covalent layer-by-layer assembly. We tested how the surface immobilization of mucins affects macrophage responses compared to Muc-gels. We showed that Muc-films on soft polyacrylamide gels mimic Muc-gel in their modulation of macrophage responses with activated gene expression of inflammatory cytokines on day 1 and then dampening them on day 3. Also, the markers of polarized macrophages, M1 and M2, were expressed at the same level for macrophages on Muc-film-coated soft polyacrylamide gels and Muc-gel. In contrast, Muc-film-coated hard polystyrene led to a different macrophage response compared to Muc-gel, having no activated expression of inflammatory cytokines and a different M1 marker expression. This suggested that the substrate mechanical properties and mucin molecular configuration determined by substrate-mucin interactions affect mucin immune-modulating properties. We conclude that mucin immune-modulating properties can be transferred to materials by mucin surface immobilization but will be dependent on the substrate chemical and mechanical properties.


Subject(s)
Hydrogels , Mucins , Animals , Biocompatible Materials/metabolism , Biomarkers/metabolism , Cytokines/metabolism , Glycoproteins/metabolism , Hydrogels/chemistry , Macrophages/metabolism , Mice , Mucin-1/metabolism , Mucins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...