Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 37: 101604, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38188360

ABSTRACT

Ultrasound has been demonstrated to activate mechanosensitive channels, which is considered the main mechanism of ultrasound neuromodulation. Currently, all channels that have been shown to be sensitive to ultrasound are cation channels. In addition to cation channels, anion channels also play indispensable roles in neural function. However, there have been no research on ultrasound regulation of anion channels until now. If anion channels can be activated by ultrasound as well, they will inevitably lead to more versatility in ultrasound neuromodulation. Cystic fibrosis transmembrane transduction regulator (CFTR) has been demonstrated to be a mechanically sensitive channel, mediating anionic transmembrane flow. To identify that CFTR is sensitive to ultrasound, CFTR was exogenously expressed in HEK293T cells and was stimulated by low intensity ultrasound. Outward currents in CFTR-expressed HEK293T cells were observed by using whole-cell patch clamp when ultrasound (0.8 MHz, 0.20 MPa) was delivered to these cells. These currents were abolished when the CFTR inhibitor (GlyH101) was applied to the solution or chloride ions was cleared from the solution. Meanwhile, the amplitude of these currents increased when the CFTR agonist (Forskolin) was applied. These results suggest that ultrasound stimuli can activate the CFTR to mediate transmembrane flowing of chloride ions at the single cell level. These findings may expand the application of ultrasound in the neuromodulation field.

2.
Biochem Biophys Res Commun ; 676: 42-47, 2023 10 08.
Article in English | MEDLINE | ID: mdl-37481942

ABSTRACT

Ultrasound stimulation is increasingly used to investigate brain function and treat brain diseases due to its high level of safety and precise spatiotemporal resolution. Therefore, it is crucial to understand the underlying mechanisms involved in ultrasound brain stimulation. In this study, we investigate the role of NMDA receptors in mediating the effects of ultrasound on primary hippocampal neurons in mice. Our results show that ultrasound alone can activate heterologous NMDA receptor subunits, including NR1A, NR2A, and NR2B, in 293T cells, as well as endogenous NMDA receptors in primary neurons. This activation leads to an influx of calcium and an increase in nuclear c-Fos expression in primary neurons that have not been pre-treated with an NMDA receptor inhibitor. In conclusion, our findings demonstrate that NMDA receptors contribute to neuronal activation by ultrasound stimulation in vitro, providing insight into the molecular mechanisms of ultrasound neuromodulation and a new mediator for the sonogenetics technique.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Ultrasonics , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Calcium/metabolism , Signal Transduction , Neurons/metabolism
3.
Proc Natl Acad Sci U S A ; 120(24): e2220867120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279265

ABSTRACT

The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.


Subject(s)
Cochlea , Hair Cells, Auditory , Animals , Mice , Cochlea/metabolism , Hair Cells, Auditory/physiology , Hearing/physiology , Mammals , Spiral Ganglion , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...